Suppr超能文献

用于医学图像分析中自监督预训练的统一视觉信息保留框架。

A Unified Visual Information Preservation Framework for Self-supervised Pre-Training in Medical Image Analysis.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Jul;45(7):8020-8035. doi: 10.1109/TPAMI.2023.3234002. Epub 2023 Jun 5.

Abstract

Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations. Codes and models are available at https://github.com/RL4M/PCRLv2.

摘要

最近计算机视觉领域的自监督学习(SSL)进展主要是基于对比的,其目标是通过比较孪生图像视图来保留不变和判别语义的潜在表示。然而,保留的高层语义并不包含足够的局部信息,这在医学图像分析(例如基于图像的诊断和肿瘤分割)中是至关重要的。为了解决对比 SSL 的局部性问题,我们建议将像素恢复任务纳入到高水准语义中,以明确地编码更多的像素级信息。我们还解决了尺度信息的保留问题,这是辅助图像理解的有力工具,但在 SSL 中并没有得到太多关注。所得到的框架可以在特征金字塔上作为一个多任务优化问题来进行公式化。具体来说,我们在金字塔中进行多尺度像素恢复和孪生特征比较。此外,我们提出非跳过 U-Net 来构建特征金字塔,并开发子裁剪来代替 3D 医学成像中的多裁剪。所提出的统一 SSL 框架(PCRLv2)在各种任务上都优于其自监督对应物,包括脑肿瘤分割(BraTS 2018)、胸部病理识别(ChestX-ray、CheXpert)、肺结节检测(LUNA)和腹部器官分割(LiTS),有时在使用有限的标注时,其性能优势明显。代码和模型可在 https://github.com/RL4M/PCRLv2 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验