Suppr超能文献

使用深度卷积神经网络对脑多巴胺转运体扫描中的基底神经节进行解读。

Interpretation of basal nuclei in brain dopamine transporter scans using a deep convolutional neural network.

作者信息

Chen Hsin-Yung, Tsai Ya-Ju, Peng Syu-Jyun

机构信息

In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, .

Department of Nuclear Medicine, Taipei Medical University Hospital and .

出版信息

Nucl Med Commun. 2025 May 1;46(5):418-426. doi: 10.1097/MNM.0000000000001963. Epub 2025 Feb 18.

Abstract

OBJECTIVE

Functional imaging using the dopamine transporter (DAT) as a biomarker has proven effective in assessing dopaminergic neuron degeneration in the striatum. In assessing the neuron degeneration, visual and semiquantitative methods are used to interpret DAT single-photon emission tomography (SPECT) scans based on striatal to background activity, striatal shape, and symmetry. Visual analysis, however, is subjective and reviewer dependent, whereas semiquantitative methods are operator dependent. Our goal in the current study was to derive results via deep learning to facilitate the clinical diagnosis of Parkinson's disease (PD).

METHODS

This retrospective study collected data from 416 patients with clinically uncertain Parkinsonian syndrome who underwent DAT SPECT via 99m Tc-TRODAT-1 ([2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo[3,2,1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino]ethanethiolato (3-)- N2,N2',S2,S2' ]oxo-[1 R -( exo - exo )]). Transfer learning was used to estimate the degree of dopaminergic neuron degeneration in the caudate and putamen for use in classifying images according to stage. Three pretrained models - Xception, InceptionV3, and ResNet101 - were retrained and tested after undergoing transfer learning for the classification of striatum dopaminergic neuron degeneration.

RESULTS

Overall, the performance of Xception exceeded that of InceptionV3 and ResNet101. The accuracy, macro F1 score, and kappa value of the proposed caudate classification model were 81.93%, 0.70, and 0.64, respectively. The accuracy, macro F1 score, and kappa value of the proposed putamen classification model were 88.75%, 0.64, and 0.61, respectively.

CONCLUSION

The proposed deep convolutional neural network provided a good model by which to interpret DAT SPECT of basal nuclei. We believe that the model could be used as an auxiliary tool to facilitate image interpretation and enhance accuracy in the diagnosis of PD.

摘要

目的

使用多巴胺转运体(DAT)作为生物标志物的功能成像已被证明在评估纹状体中多巴胺能神经元变性方面是有效的。在评估神经元变性时,视觉和半定量方法用于根据纹状体与背景活性、纹状体形状和对称性来解释DAT单光子发射断层扫描(SPECT)图像。然而,视觉分析具有主观性且依赖于审阅者,而半定量方法则依赖于操作者。我们在当前研究中的目标是通过深度学习得出结果,以促进帕金森病(PD)的临床诊断。

方法

这项回顾性研究收集了416例临床诊断不确定的帕金森综合征患者的数据,这些患者通过99m Tc-TRODAT-1([2-[[2-[[[3-(4-氯苯基)-8-甲基-8-氮杂双环[3,2,1]辛-2-基]甲基](2-巯基乙基)氨基]乙基]氨基]乙硫醇盐(3-)-N2,N2',S2,S2']氧代-[1R-(外向-外向)])进行了DAT SPECT检查。使用迁移学习来估计尾状核和壳核中多巴胺能神经元变性的程度,以便根据阶段对图像进行分类。在对纹状体多巴胺能神经元变性进行分类的迁移学习后,对三个预训练模型——Xception、InceptionV3和ResNet101——进行了重新训练和测试。

结果

总体而言,Xception的性能超过了InceptionV3和ResNet101。所提出的尾状核分类模型的准确率、宏F1分数和kappa值分别为81.93%、0.70和0.64。所提出的壳核分类模型的准确率、宏F1分数和kappa值分别为88.75%、0.64和0.61。

结论

所提出的深度卷积神经网络提供了一个很好的模型来解释基底核的DAT SPECT图像。我们相信该模型可以用作辅助工具,以促进图像解释并提高PD诊断的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dce/11964194/cd6995565627/nmc-46-418-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验