Faculty of Computer Science and Center for Molecular and Cellular Bioengineering, Technical University Dresden, BiotechDresden, Germany.
ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft M.B.H, 01307, Dresden, Germany.
Eur J Nucl Med Mol Imaging. 2022 Mar;49(4):1176-1186. doi: 10.1007/s00259-021-05569-9. Epub 2021 Oct 15.
Deep convolutional neural networks (CNN) provide high accuracy for automatic classification of dopamine transporter (DAT) SPECT images. However, CNN are inherently black-box in nature lacking any kind of explanation for their decisions. This limits their acceptance for clinical use. This study tested layer-wise relevance propagation (LRP) to explain CNN-based classification of DAT-SPECT in patients with clinically uncertain parkinsonian syndromes.
The study retrospectively included 1296 clinical DAT-SPECT with visual binary interpretation as "normal" or "reduced" by two experienced readers as standard-of-truth. A custom-made CNN was trained with 1008 randomly selected DAT-SPECT. The remaining 288 DAT-SPECT were used to assess classification performance of the CNN and to test LRP for explanation of the CNN-based classification.
Overall accuracy, sensitivity, and specificity of the CNN were 95.8%, 92.8%, and 98.7%, respectively. LRP provided relevance maps that were easy to interpret in each individual DAT-SPECT. In particular, the putamen in the hemisphere most affected by nigrostriatal degeneration was the most relevant brain region for CNN-based classification in all reduced DAT-SPECT. Some misclassified DAT-SPECT showed an "inconsistent" relevance map more typical for the true class label.
LRP is useful to provide explanation of CNN-based decisions in individual DAT-SPECT and, therefore, can be recommended to support CNN-based classification of DAT-SPECT in clinical routine. Total computation time of 3 s is compatible with busy clinical workflow. The utility of "inconsistent" relevance maps to identify misclassified cases requires further investigation.
深度卷积神经网络(CNN)为多巴胺转运体(DAT)SPECT 图像的自动分类提供了很高的准确性。然而,CNN 在本质上是黑盒的,缺乏对其决策的任何解释。这限制了它们在临床应用中的接受程度。本研究测试了逐层相关性传播(LRP),以解释在临床不确定的帕金森综合征患者中基于 CNN 的 DAT-SPECT 分类。
该研究回顾性纳入了 1296 例临床 DAT-SPECT,由两位有经验的读者进行视觉二进制解读,作为标准。一个定制的 CNN 是用 1008 个随机选择的 DAT-SPECT 进行训练的。其余 288 个 DAT-SPECT 用于评估 CNN 的分类性能,并测试 LRP 以解释基于 CNN 的分类。
CNN 的总体准确率、敏感度和特异性分别为 95.8%、92.8%和 98.7%。LRP 提供了易于在每个个体 DAT-SPECT 中解释的相关性图。特别是,在受黑质纹状体变性影响最严重的半球中,壳核是基于 CNN 分类的最相关脑区。一些分类错误的 DAT-SPECT 显示出更符合真实类别标签的“不一致”相关性图。
LRP 可用于提供个体 DAT-SPECT 中基于 CNN 的决策的解释,因此可以推荐用于支持 DAT-SPECT 在临床常规中的基于 CNN 的分类。3 秒的总计算时间与繁忙的临床工作流程兼容。“不一致”相关性图用于识别分类错误的病例的效用需要进一步研究。