Suppr超能文献

可解释人工智能提高卷积神经网络在诊断临床不确定帕金森综合征中对多巴胺转运体 SPECT 自动分类的接受度。

Explainable AI to improve acceptance of convolutional neural networks for automatic classification of dopamine transporter SPECT in the diagnosis of clinically uncertain parkinsonian syndromes.

机构信息

Faculty of Computer Science and Center for Molecular and Cellular Bioengineering, Technical University Dresden, BiotechDresden, Germany.

ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft M.B.H, 01307, Dresden, Germany.

出版信息

Eur J Nucl Med Mol Imaging. 2022 Mar;49(4):1176-1186. doi: 10.1007/s00259-021-05569-9. Epub 2021 Oct 15.

Abstract

PURPOSE

Deep convolutional neural networks (CNN) provide high accuracy for automatic classification of dopamine transporter (DAT) SPECT images. However, CNN are inherently black-box in nature lacking any kind of explanation for their decisions. This limits their acceptance for clinical use. This study tested layer-wise relevance propagation (LRP) to explain CNN-based classification of DAT-SPECT in patients with clinically uncertain parkinsonian syndromes.

METHODS

The study retrospectively included 1296 clinical DAT-SPECT with visual binary interpretation as "normal" or "reduced" by two experienced readers as standard-of-truth. A custom-made CNN was trained with 1008 randomly selected DAT-SPECT. The remaining 288 DAT-SPECT were used to assess classification performance of the CNN and to test LRP for explanation of the CNN-based classification.

RESULTS

Overall accuracy, sensitivity, and specificity of the CNN were 95.8%, 92.8%, and 98.7%, respectively. LRP provided relevance maps that were easy to interpret in each individual DAT-SPECT. In particular, the putamen in the hemisphere most affected by nigrostriatal degeneration was the most relevant brain region for CNN-based classification in all reduced DAT-SPECT. Some misclassified DAT-SPECT showed an "inconsistent" relevance map more typical for the true class label.

CONCLUSION

LRP is useful to provide explanation of CNN-based decisions in individual DAT-SPECT and, therefore, can be recommended to support CNN-based classification of DAT-SPECT in clinical routine. Total computation time of 3 s is compatible with busy clinical workflow. The utility of "inconsistent" relevance maps to identify misclassified cases requires further investigation.

摘要

目的

深度卷积神经网络(CNN)为多巴胺转运体(DAT)SPECT 图像的自动分类提供了很高的准确性。然而,CNN 在本质上是黑盒的,缺乏对其决策的任何解释。这限制了它们在临床应用中的接受程度。本研究测试了逐层相关性传播(LRP),以解释在临床不确定的帕金森综合征患者中基于 CNN 的 DAT-SPECT 分类。

方法

该研究回顾性纳入了 1296 例临床 DAT-SPECT,由两位有经验的读者进行视觉二进制解读,作为标准。一个定制的 CNN 是用 1008 个随机选择的 DAT-SPECT 进行训练的。其余 288 个 DAT-SPECT 用于评估 CNN 的分类性能,并测试 LRP 以解释基于 CNN 的分类。

结果

CNN 的总体准确率、敏感度和特异性分别为 95.8%、92.8%和 98.7%。LRP 提供了易于在每个个体 DAT-SPECT 中解释的相关性图。特别是,在受黑质纹状体变性影响最严重的半球中,壳核是基于 CNN 分类的最相关脑区。一些分类错误的 DAT-SPECT 显示出更符合真实类别标签的“不一致”相关性图。

结论

LRP 可用于提供个体 DAT-SPECT 中基于 CNN 的决策的解释,因此可以推荐用于支持 DAT-SPECT 在临床常规中的基于 CNN 的分类。3 秒的总计算时间与繁忙的临床工作流程兼容。“不一致”相关性图用于识别分类错误的病例的效用需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/579e/8921148/08b47f6b4d23/259_2021_5569_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验