Suppr超能文献

研究基于生成对抗网络的深度学习在减少心脏磁共振运动伪影中的应用。

Investigating the Use of Generative Adversarial Networks-Based Deep Learning for Reducing Motion Artifacts in Cardiac Magnetic Resonance.

作者信息

Ma Ze-Peng, Zhu Yue-Ming, Zhang Xiao-Dan, Zhao Yong-Xia, Zheng Wei, Yuan Shuang-Rui, Li Gao-Yang, Zhang Tian-Le

机构信息

Department of Radiology, Affiliated Hospital of Hebei University/ Clinical Medical College, Hebei University, Baoding, 071000, People's Republic of China.

Hebei Key Laboratory of Precise Imaging of inflammation Tumors, Baoding, Hebei Province, 071000, People's Republic of China.

出版信息

J Multidiscip Healthc. 2025 Feb 12;18:787-799. doi: 10.2147/JMDH.S492163. eCollection 2025.

Abstract

OBJECTIVE

To evaluate the effectiveness of deep learning technology based on generative adversarial networks (GANs) in reducing motion artifacts in cardiac magnetic resonance (CMR) cine sequences.

METHODS

The training and testing datasets consisted of 2000 and 200 pairs of clear and blurry images, respectively, acquired through simulated motion artifacts in CMR cine sequences. These datasets were used to establish and train a deep learning GAN model. To assess the efficacy of the deep learning network in mitigating motion artifacts, 100 images with simulated motion artifacts and 37 images with real-world motion artifacts encountered in clinical practice were selected. Image quality pre- and post-optimization was assessed using metrics including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Leningrad Focus Measure, and a 5-point Likert scale.

RESULTS

After GAN optimization, notable improvements were observed in the PSNR, SSIM, and focus measure metrics for the 100 images with simulated artifacts. These metrics increased from initial values of 23.85±2.85, 0.71±0.08, and 4.56±0.67, respectively, to 27.91±1.74, 0.83±0.05, and 7.74±0.39 post-optimization. Additionally, the subjective assessment scores significantly improved from 2.44±1.08 to 4.44±0.66 (P<0.001). For the 37 images with real-world artifacts, the Tenengrad Focus Measure showed a significant enhancement, rising from 6.06±0.91 to 10.13±0.48 after artifact removal. Subjective ratings also increased from 3.03±0.73 to 3.73±0.87 (P<0.001).

CONCLUSION

GAN-based deep learning technology effectively reduces motion artifacts present in CMR cine images, demonstrating significant potential for clinical application in optimizing CMR motion artifact management.

摘要

目的

评估基于生成对抗网络(GAN)的深度学习技术在减少心脏磁共振(CMR)电影序列运动伪影方面的有效性。

方法

训练和测试数据集分别由2000对和200对清晰与模糊图像组成,这些图像通过CMR电影序列中的模拟运动伪影获取。这些数据集用于建立和训练深度学习GAN模型。为评估深度学习网络减轻运动伪影的功效,选择了100张带有模拟运动伪影的图像和37张在临床实践中遇到的带有真实运动伪影的图像。使用包括峰值信噪比(PSNR)、结构相似性指数(SSIM)、列宁格勒聚焦度量和5点李克特量表等指标评估图像优化前后的质量。

结果

经过GAN优化后,对于100张带有模拟伪影的图像,PSNR、SSIM和聚焦度量指标有显著改善。这些指标分别从初始值23.85±2.85、0.71±0.08和4.56±0.67增加到优化后的27.91±1.74、0.83±0.05和7.74±0.39。此外,主观评估分数从2.44±1.08显著提高到4.44±0.66(P<0.001)。对于37张带有真实伪影的图像,Tenengrad聚焦度量显示有显著增强,去除伪影后从6.06±0.91增加到10.13±0.48。主观评分也从3.03±0.73增加到3.73±0.87(P<0.001)。

结论

基于GAN的深度学习技术有效减少了CMR电影图像中存在的运动伪影,在优化CMR运动伪影管理的临床应用中显示出巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d81/11830935/4893cd99b50a/JMDH-18-787-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验