Suppr超能文献

一种基于混合空间和时空损失函数的心脏磁共振欠采样图像重建深度学习框架。

A Deep Learning Framework for Cardiac MR Under-Sampled Image Reconstruction with a Hybrid Spatial and -Space Loss Function.

作者信息

Al-Haidri Walid, Matveev Igor, Al-Antari Mugahed A, Zubkov Mikhail

机构信息

School of Physics and Engineering, ITMO University, Saint Petersburg 191002, Russia.

Department of Artificial Intelligence, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea.

出版信息

Diagnostics (Basel). 2023 Mar 15;13(6):1120. doi: 10.3390/diagnostics13061120.

Abstract

Magnetic resonance imaging (MRI) is an efficient, non-invasive diagnostic imaging tool for a variety of disorders. In modern MRI systems, the scanning procedure is time-consuming, which leads to problems with patient comfort and causes motion artifacts. Accelerated or parallel MRI has the potential to minimize patient stress as well as reduce scanning time and medical costs. In this paper, a new deep learning MR image reconstruction framework is proposed to provide more accurate reconstructed MR images when under-sampled or aliased images are generated. The proposed reconstruction model is designed based on the conditional generative adversarial networks (CGANs) where the generator network is designed in a form of an encoder-decoder U-Net network. A hybrid spatial and -space loss function is also proposed to improve the reconstructed image quality by minimizing the L1-distance considering both spatial and frequency domains simultaneously. The proposed reconstruction framework is directly compared when CGAN and U-Net are adopted and used individually based on the proposed hybrid loss function against the conventional L1-norm. Finally, the proposed reconstruction framework with the extended loss function is evaluated and compared against the traditional SENSE reconstruction technique using the evaluation metrics of structural similarity (SSIM) and peak signal to noise ratio (PSNR). To fine-tune and evaluate the proposed methodology, the public Multi-Coil -Space OCMR dataset for cardiovascular MR imaging is used. The proposed framework achieves a better image reconstruction quality compared to SENSE in terms of PSNR by 6.84 and 9.57 when U-Net and CGAN are used, respectively. Similarly, it demonstrates SSIM of the reconstructed MR images comparable to the one provided by the SENSE algorithm when U-Net and CGAN are used. Comparing cases where the proposed hybrid loss function is used against the cases with the simple L1-norm, the reconstruction performance can be noticed to improve by 6.84 and 9.57 for U-Net and CGAN, respectively. To conclude this, the proposed framework using CGAN provides the best reconstruction performance compared with U-Net or the conventional SENSE reconstruction techniques. The proposed framework seems to be useful for the practical reconstruction of cardiac images since it can provide better image quality in terms of SSIM and PSNR.

摘要

磁共振成像(MRI)是一种用于多种疾病诊断的高效、非侵入性成像工具。在现代MRI系统中,扫描过程耗时较长,这会影响患者舒适度并产生运动伪影。加速或并行MRI有潜力将患者压力降至最低,同时减少扫描时间和医疗成本。本文提出了一种新的深度学习MR图像重建框架,用于在生成欠采样或混叠图像时提供更准确的重建MR图像。所提出的重建模型基于条件生成对抗网络(CGAN)设计,其中生成器网络采用编码器 - 解码器U-Net网络的形式。还提出了一种混合空间和频域损失函数,通过同时考虑空间和频域来最小化L1距离,从而提高重建图像质量。基于所提出的混合损失函数,将所提出的重建框架与单独使用CGAN和U-Net时的情况直接进行比较,并与传统的L1范数进行对比。最后,使用结构相似性(SSIM)和峰值信噪比(PSNR)评估指标,对具有扩展损失函数的所提出的重建框架与传统的SENSE重建技术进行评估和比较。为了微调并评估所提出的方法,使用了用于心血管MR成像的公共多线圈频域OCMR数据集。在所提出的框架中,当使用U-Net和CGAN时,与SENSE相比,在PSNR方面分别实现了6.84和9.57的更好图像重建质量。同样,当使用U-Net和CGAN时,所重建MR图像的SSIM与SENSE算法提供的相当。将使用所提出的混合损失函数的情况与使用简单L1范数的情况进行比较,U-Net和CGAN的重建性能分别提高了6.84和9.57。综上所述,与U-Net或传统的SENSE重建技术相比,使用CGAN的所提出框架提供了最佳的重建性能。所提出的框架似乎对心脏图像的实际重建很有用,因为它在SSIM和PSNR方面可以提供更好的图像质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7581/10047415/d25caf2b073e/diagnostics-13-01120-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验