Suppr超能文献

基于生成对抗网络的心脏动脉和血管运动伪影图像恢复

Image restoration of motion artifacts in cardiac arteries and vessels based on a generative adversarial network.

作者信息

Deng Fuquan, Wan Qian, Zeng Yingting, Shi Yanbin, Wu Huiying, Wu Yu, Xu Weifeng, Mok Greta S P, Zhang Xiaochun, Hu Zhanli

机构信息

Computer Department of North China Electric Power University, Baoding, China.

Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

出版信息

Quant Imaging Med Surg. 2022 May;12(5):2755-2766. doi: 10.21037/qims-20-1400.

Abstract

BACKGROUND

When the heart rate of a patient exceeds the physical limits of a scanning device, even retrospective electrocardiography (ECG) gating technology cannot correct motion artifacts. The purpose of this study was to use deep learning methods to correct motion artifacts in coronary computed tomography angiography (CCTA) images acquired with retrospective ECG gating.

METHODS

To correct motion artifacts in CCTA images, we used a cycle Wasserstein generative adversarial network with a gradient penalty (WGAN-GP) to synthesize CCTA images without motion artifacts, and applied objective image indicators and clinical quantitative scores to evaluate the images. The objective image indicators included peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and normalized mean square error (NMSE). For clinical quantitative scoring, we randomly selected 50 sets of images from the test data set as the scoring data set. We invited 2 radiologists from Zhongnan Hospital of Wuhan University to score the composite images.

RESULTS

In the test images, the PSNR, SSIM, NMSE and clinical quantitative score were 24.96±1.54, 0.769±0.055, 0.031±0.023, and 4.12±0.61, respectively. The images synthesized by cycle WGAN-GP performed better on objective image indicators and clinical quantitative scores than those synthesized by cycle least squares generative adversarial network (LSGAN), UNet, WGAN, and cycle WGAN.

CONCLUSIONS

Our proposed method can effectively correct the motion artifacts of coronary arteries in CCTA images and performs better than other methods. According to the performance of the clinical score, correction of images by this method does not affect the clinical diagnosis.

摘要

背景

当患者心率超过扫描设备的物理极限时,即使是回顾性心电图(ECG)门控技术也无法校正运动伪影。本研究的目的是使用深度学习方法校正通过回顾性ECG门控获取的冠状动脉计算机断层扫描血管造影(CCTA)图像中的运动伪影。

方法

为校正CCTA图像中的运动伪影,我们使用具有梯度惩罚的循环瓦瑟斯坦生成对抗网络(WGAN-GP)来合成无运动伪影的CCTA图像,并应用客观图像指标和临床定量评分来评估图像。客观图像指标包括峰值信噪比(PSNR)、结构相似性(SSIM)和归一化均方误差(NMSE)。对于临床定量评分,我们从测试数据集中随机选择50组图像作为评分数据集。我们邀请武汉大学中南医院的2名放射科医生对合成图像进行评分。

结果

在测试图像中,PSNR、SSIM、NMSE和临床定量评分分别为24.96±1.54、0.769±0.055、0.031±0.023和4.12±0.61。循环WGAN-GP合成的图像在客观图像指标和临床定量评分方面比循环最小二乘生成对抗网络(LSGAN)、UNet、WGAN和循环WGAN合成的图像表现更好。

结论

我们提出的方法可以有效校正CCTA图像中冠状动脉的运动伪影,并且比其他方法表现更好。根据。根据临床评分的表现,用该方法校正图像不影响临床诊断。

相似文献

8
Half-scan artifact correction using generative adversarial network for dental CT.基于生成对抗网络的牙科 CT 半扫描伪影校正
Comput Biol Med. 2021 May;132:104313. doi: 10.1016/j.compbiomed.2021.104313. Epub 2021 Mar 6.

本文引用的文献

1
A Liver Segmentation Method Based on the Fusion of VNet and WGAN.基于 VNet 和 WGAN 融合的肝脏分割方法。
Comput Math Methods Med. 2021 Oct 8;2021:5536903. doi: 10.1155/2021/5536903. eCollection 2021.
7
D-UNet: A Dimension-Fusion U Shape Network for Chronic Stroke Lesion Segmentation.D-UNet:一种用于慢性中风病灶分割的维度融合U型网络。
IEEE/ACM Trans Comput Biol Bioinform. 2021 May-Jun;18(3):940-950. doi: 10.1109/TCBB.2019.2939522. Epub 2021 Jun 3.
10
Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal.二维稀疏光声断层成像伪影去除的全密集 UNet。
IEEE J Biomed Health Inform. 2020 Feb;24(2):568-576. doi: 10.1109/JBHI.2019.2912935. Epub 2019 Apr 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验