Deng Fuquan, Wan Qian, Zeng Yingting, Shi Yanbin, Wu Huiying, Wu Yu, Xu Weifeng, Mok Greta S P, Zhang Xiaochun, Hu Zhanli
Computer Department of North China Electric Power University, Baoding, China.
Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Quant Imaging Med Surg. 2022 May;12(5):2755-2766. doi: 10.21037/qims-20-1400.
When the heart rate of a patient exceeds the physical limits of a scanning device, even retrospective electrocardiography (ECG) gating technology cannot correct motion artifacts. The purpose of this study was to use deep learning methods to correct motion artifacts in coronary computed tomography angiography (CCTA) images acquired with retrospective ECG gating.
To correct motion artifacts in CCTA images, we used a cycle Wasserstein generative adversarial network with a gradient penalty (WGAN-GP) to synthesize CCTA images without motion artifacts, and applied objective image indicators and clinical quantitative scores to evaluate the images. The objective image indicators included peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and normalized mean square error (NMSE). For clinical quantitative scoring, we randomly selected 50 sets of images from the test data set as the scoring data set. We invited 2 radiologists from Zhongnan Hospital of Wuhan University to score the composite images.
In the test images, the PSNR, SSIM, NMSE and clinical quantitative score were 24.96±1.54, 0.769±0.055, 0.031±0.023, and 4.12±0.61, respectively. The images synthesized by cycle WGAN-GP performed better on objective image indicators and clinical quantitative scores than those synthesized by cycle least squares generative adversarial network (LSGAN), UNet, WGAN, and cycle WGAN.
Our proposed method can effectively correct the motion artifacts of coronary arteries in CCTA images and performs better than other methods. According to the performance of the clinical score, correction of images by this method does not affect the clinical diagnosis.
当患者心率超过扫描设备的物理极限时,即使是回顾性心电图(ECG)门控技术也无法校正运动伪影。本研究的目的是使用深度学习方法校正通过回顾性ECG门控获取的冠状动脉计算机断层扫描血管造影(CCTA)图像中的运动伪影。
为校正CCTA图像中的运动伪影,我们使用具有梯度惩罚的循环瓦瑟斯坦生成对抗网络(WGAN-GP)来合成无运动伪影的CCTA图像,并应用客观图像指标和临床定量评分来评估图像。客观图像指标包括峰值信噪比(PSNR)、结构相似性(SSIM)和归一化均方误差(NMSE)。对于临床定量评分,我们从测试数据集中随机选择50组图像作为评分数据集。我们邀请武汉大学中南医院的2名放射科医生对合成图像进行评分。
在测试图像中,PSNR、SSIM、NMSE和临床定量评分分别为24.96±1.54、0.769±0.055、0.031±0.023和4.12±0.61。循环WGAN-GP合成的图像在客观图像指标和临床定量评分方面比循环最小二乘生成对抗网络(LSGAN)、UNet、WGAN和循环WGAN合成的图像表现更好。
我们提出的方法可以有效校正CCTA图像中冠状动脉的运动伪影,并且比其他方法表现更好。根据。根据临床评分的表现,用该方法校正图像不影响临床诊断。