Lau Mai Chan, Borowsky Jennifer, Väyrynen Juha P, Haruki Koichiro, Zhao Melissa, Dias Costa Andressa, Gu Simeng, da Silva Annacarolina, Ugai Tomotaka, Arima Kota, Nguyen Minh N, Takashima Yasutoshi, Yeong Joe, Tai David, Hamada Tsuyoshi, Lennerz Jochen K, Fuchs Charles S, Wu Catherine J, Meyerhardt Jeffrey A, Ogino Shuji, Nowak Jonathan A
Bioinformatics Institute (BII), Agency for Science, Technology and Research (A* STAR), Singapore, Republic of Singapore.
Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A* STAR), Singapore, Republic of Singapore.
PLoS Comput Biol. 2025 Feb 18;21(2):e1012707. doi: 10.1371/journal.pcbi.1012707. eCollection 2025 Feb.
Growing evidence supports the importance of characterizing the organizational patterns of various cellular constituents in the tumor microenvironment in precision oncology. Most existing data on immune cell infiltrates in tumors, which are based on immune cell counts or nearest neighbor-type analyses, have failed to fully capture the cellular organization and heterogeneity.
We introduce a computational algorithm, termed Tumor-Immune Partitioning and Clustering (TIPC), that jointly measures immune cell partitioning between tumor epithelial and stromal areas and immune cell clustering versus dispersion. As proof-of-principle, we applied TIPC to a prospective cohort incident tumor biobank containing 931 colorectal carcinoma cases. TIPC identified tumor subtypes with unique spatial patterns between tumor cells and T lymphocytes linked to certain molecular pathologic and prognostic features. T lymphocyte identification and phenotyping were achieved using multiplexed (multispectral) immunofluorescence. In a separate hepatocellular carcinoma cohort, we replaced the stromal component with specific immune cell types-CXCR3+CD68+ or CD8+-to profile their spatial relationships with CXCL9+CD68+ cells.
Six unsupervised TIPC subtypes based on T lymphocyte distribution patterns were identified, comprising two cold and four hot subtypes. Three of the four hot subtypes were associated with significantly longer colorectal cancer (CRC)-specific survival compared to a reference cold subtype. Our analysis showed that variations in T-cell densities among the TIPC subtypes did not strictly correlate with prognostic benefits, underscoring the prognostic significance of immune cell spatial patterns. Additionally, TIPC revealed two spatially distinct and cell density-specific subtypes among microsatellite instability-high colorectal cancers, indicating its potential to upgrade tumor subtyping. TIPC was also applied to additional immune cell types, eosinophils and neutrophils, identified using morphology and supervised machine learning; here two tumor subtypes with similarly low densities, namely 'cold, tumor-rich' and 'cold, stroma-rich', exhibited differential prognostic associations. Lastly, we validated our methods and results using The Cancer Genome Atlas colon and rectal adenocarcinoma data (n = 570). Moreover, applying TIPC to hepatocellular carcinoma cases (n = 27) highlighted critical cell interactions like CXCL9-CXCR3 and CXCL9-CD8.
Unsupervised discoveries of microgeometric tissue organizational patterns and novel tumor subtypes using the TIPC algorithm can deepen our understanding of the tumor immune microenvironment and likely inform precision cancer immunotherapy.
越来越多的证据支持在精准肿瘤学中描绘肿瘤微环境中各种细胞成分的组织模式的重要性。现有的大多数关于肿瘤中免疫细胞浸润的数据,基于免疫细胞计数或最近邻类型分析,未能充分捕捉细胞组织和异质性。
我们引入了一种名为肿瘤 - 免疫分区与聚类(TIPC)的计算算法,该算法联合测量肿瘤上皮和基质区域之间的免疫细胞分区以及免疫细胞的聚类与分散情况。作为原理验证,我们将TIPC应用于一个包含931例结直肠癌病例的前瞻性队列事件肿瘤生物样本库。TIPC识别出肿瘤细胞与T淋巴细胞之间具有独特空间模式的肿瘤亚型,这些亚型与某些分子病理和预后特征相关。使用多重(多光谱)免疫荧光实现T淋巴细胞的识别和表型分析。在另一个肝细胞癌队列中,我们用特定的免疫细胞类型 - CXCR3 + CD68 +或CD8 +替换基质成分,以描绘它们与CXCL9 + CD68 +细胞的空间关系。
基于T淋巴细胞分布模式确定了六种无监督的TIPC亚型,包括两种冷亚型和四种热亚型。与参考冷亚型相比,四种热亚型中的三种与显著更长的结直肠癌(CRC)特异性生存期相关。我们的分析表明,TIPC亚型之间T细胞密度的变化与预后益处并不严格相关,这突出了免疫细胞空间模式的预后意义。此外,TIPC在微卫星不稳定性高的结直肠癌中揭示了两种空间上不同且细胞密度特异的亚型,表明其在提升肿瘤亚型分类方面的潜力。TIPC还应用于使用形态学和监督机器学习识别的其他免疫细胞类型,嗜酸性粒细胞和中性粒细胞;在这里,两种密度相似较低的肿瘤亚型,即“冷,肿瘤丰富”和“冷,基质丰富”,表现出不同的预后关联。最后,我们使用癌症基因组图谱结肠和直肠腺癌数据(n = 570)验证了我们的方法和结果。此外,将TIPC应用于肝细胞癌病例(n = 27)突出了关键的细胞相互作用,如CXCL9 - CXCR3和CXCL9 - CD8。
使用TIPC算法对微观几何组织模式和新型肿瘤亚型进行无监督发现,可以加深我们对肿瘤免疫微环境的理解,并可能为精准癌症免疫治疗提供信息。