Torky Harchegani Peyman, Mashhadi Keshtiban Mohsen, Moghimi Zand Mahdi, Azizi Zahra
Small Medical Devices, Bio-MEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Electrophoresis. 2025 Feb;46(3-4):232-239. doi: 10.1002/elps.202400110. Epub 2025 Feb 18.
Contactless and conventional dielectrophoresis (DEP) microfluidic devices are extensively utilized in lab-on-a-chip applications, particularly for cell isolation and analysis. Nonetheless, these devices typically operate at low throughput and require high applied voltages, posing limitations for microfluidic cell isolation and separation. Addressing these challenges, this study explores the utilization of diverse micro-pillar geometries within the microfluidic device to augment THP-1 cell trapping efficiency numerically using FEM modeling. Furthermore, the simulations examine the influence of pillar gap and quantity on cell trapping efficiency in a contactless DEP device. Notably, elliptical pillars demonstrate superior cell trapping efficiency at elevated flow rates compared to alternative configurations, making the microchip more amenable for high-throughput cell separation, trapping, and isolation applications. Remarkably, employing elliptical pillars in a contactless DEP microfluidic chip yields nearly 100% cell trapping efficiency at higher flow rates. Ellipse configuration showed 122% higher cell trap efficiency at the maximum flowrate compare to the previous study with circular configuration. Additionally, it is observed that reducing the gap between pillars correlates with enhanced cell trapping efficiency. Simulation outcomes indicate that employing two rows of elliptical pillars with a 40-µm gap achieves optimal performance. The findings of this investigation underscore the importance of pillars in contactless DEP devices and provide valuable insights for future designs of such microfluidic devices.
非接触式和传统介电泳(DEP)微流控装置在芯片实验室应用中被广泛使用,特别是用于细胞分离和分析。然而,这些装置通常通量较低,并且需要高施加电压,这对微流控细胞分离和分选构成了限制。为应对这些挑战,本研究探索在微流控装置中利用不同的微柱几何形状,通过有限元建模在数值上提高THP-1细胞捕获效率。此外,模拟研究了柱间距和数量对非接触式DEP装置中细胞捕获效率的影响。值得注意的是,与其他配置相比,椭圆形柱在较高流速下表现出更高的细胞捕获效率,使该微芯片更适合高通量细胞分离、捕获和分选应用。值得注意的是,在非接触式DEP微流控芯片中采用椭圆形柱在较高流速下可实现近100%的细胞捕获效率。与先前圆形配置的研究相比,椭圆形配置在最大流速下的细胞捕获效率高出122%。此外,观察到减小柱间距与提高细胞捕获效率相关。模拟结果表明,采用两排间距为40μm的椭圆形柱可实现最佳性能。本研究结果强调了柱在非接触式DEP装置中的重要性,并为此类微流控装置的未来设计提供了有价值的见解。