Suppr超能文献

G2M 检查点相关的免疫屏障结构及特征对肝细胞癌预后和免疫治疗反应的影响:来自空间转录组和机器学习的见解

G2M-checkpoint related immune barrier structure and signature for prognosis and immunotherapy response in hepatocellular carcinoma: insights from spatial transcriptome and machine learning.

作者信息

Chen Xingte, Wu Shiji, He Hongxin, Tang Jingjing, Zhong Yaqi, Fang Huipeng, Huang Qizhen, Hong Liang, Shao Lingdong, Wu Junxin

机构信息

Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.

Department of Gastrointestinal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.

出版信息

J Transl Med. 2025 Feb 18;23(1):202. doi: 10.1186/s12967-024-06051-4.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) treatment remains challenging, particularly for immune checkpoint inhibitors (ICIs) non-response patients. Spatial transcriptome (ST) data and machine learning algorithms offer new insights into understanding HCC heterogeneity and ICIs resistance mechanisms.

METHODS

Utilizing ST data from HCC patients on ICIs treatment, we analyzed pathway activity and immune infiltration. We combined 167 machine learning models to develop a G2M-checkpoint related signature (G2MRS) based on differential gene expression. The four cohorts and in-house cohort was used to validate G2MRS, and KPNA2's role was further examined through in vitro experiments in two different liver cancer cell lines.

RESULTS

Our analysis revealed a distinct suppressive immune barrier structure (SIBS) in ICIs non-response patients, associated with upregulated G2M-checkpoint levels. G2MRS, consisting of KPNA2, CENPA, and UCK2, accurately predicted HCC prognosis and ICIs response. Further in vitro experiments demonstrated KPNA2's role in regulating migration, proliferation, and apoptosis in liver cancer.

CONCLUSIONS

This study highlights the importance of spatial heterogeneity and machine learning in refining HCC prognosis and ICIs response prediction. G2MRS and KPNA2 emerge as promising biomarkers for personalized HCC management.

摘要

背景

肝细胞癌(HCC)的治疗仍然具有挑战性,尤其是对于免疫检查点抑制剂(ICI)无反应的患者。空间转录组(ST)数据和机器学习算法为理解HCC异质性和ICI耐药机制提供了新的见解。

方法

利用接受ICI治疗的HCC患者的ST数据,我们分析了通路活性和免疫浸润。我们结合167种机器学习模型,基于差异基因表达开发了一种与G2M检查点相关的特征(G2MRS)。使用四个队列和内部队列来验证G2MRS,并通过在两种不同肝癌细胞系中的体外实验进一步研究KPNA2的作用。

结果

我们的分析揭示了ICI无反应患者中一种独特的抑制性免疫屏障结构(SIBS),与G2M检查点水平上调有关。由KPNA2、CENPA和UCK2组成的G2MRS准确预测了HCC的预后和ICI反应。进一步的体外实验证明了KPNA2在调节肝癌细胞迁移、增殖和凋亡中的作用。

结论

本研究强调了空间异质性和机器学习在优化HCC预后和ICI反应预测中的重要性。G2MRS和KPNA2有望成为个性化HCC管理的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1421/11837653/88ea655f6c60/12967_2024_6051_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验