Rahman Omar M, Tarantino Roberto, Waldman Stephen D, Hwang Dae Kun
Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
Li Ka Shing Knowledge Institute, Unity Health Toronto (St. Michael's Hospital), Toronto, Ontario M5B 1W8, Canada.
ACS Biomater Sci Eng. 2025 Mar 10;11(3):1857-1868. doi: 10.1021/acsbiomaterials.4c02359. Epub 2025 Feb 18.
Traditional cancer research has long relied on two-dimensional (2D) cell cultures, which inadequately mimic the complex three-dimensional (3D) microenvironments of tumors. Recent advancements in 3D cell cultures, particularly cancer spheroids, have highlighted their superior physiological relevance. However, existing methods for spheroid generation often require complex, multistep fabrication processes that limit scalability and reproducibility. In this study, we present a novel single-step photolithographic technique to fabricate high-aspect-ratio V-slanted hydrogel microwells. By employing polyethylene glycol (PEG)-based hydrogels, we create biocompatible, extracellular matrix (ECM)-like scaffolds that enhance gas and nutrient exchange while promoting uniform spheroid formation. The hydrogel microwells allow precise control of spheroid size, achieving a physiologically relevant diameter of 425 μm within 12-24 h, and the resulting spheroids exhibiting high viability over 3 weeks. Moreover, the method facilitates the creation of scalable multiwell arrays for high-throughput applications, making it suitable for both small-scale and large-scale experimental needs. This platform addresses the limitations of traditional microwell fabrication, offering a robust, efficient, and reproducible system for generating physiologically relevant 3D models with valuable applications in cancer research, drug testing, and tissue engineering.
传统的癌症研究长期以来一直依赖二维(2D)细胞培养,这种培养方式无法充分模拟肿瘤复杂的三维(3D)微环境。三维细胞培养,尤其是癌症球体培养的最新进展,凸显了它们在生理相关性方面的优势。然而,现有的球体生成方法通常需要复杂的多步骤制造过程,这限制了可扩展性和可重复性。在本研究中,我们提出了一种新颖的单步光刻技术来制造高纵横比的V型倾斜水凝胶微孔。通过使用基于聚乙二醇(PEG)的水凝胶,我们创建了生物相容性的、类似细胞外基质(ECM)的支架,可增强气体和营养物质交换,同时促进球体均匀形成。水凝胶微孔能够精确控制球体大小,在12至24小时内实现425μm的生理相关直径,并且所形成的球体在3周内具有高活力。此外,该方法便于创建用于高通量应用的可扩展多孔阵列,适用于小规模和大规模实验需求。这个平台解决了传统微孔制造的局限性,为生成具有生理相关性的3D模型提供了一个强大、高效且可重复的系统,在癌症研究、药物测试和组织工程中具有重要应用价值。