Suppr超能文献

在水凝胶微图案化纳米纤维微孔上培养的人唾液腺细胞的功能性球体组织。

Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells.

作者信息

Shin Hyun-Soo, Kook Yun-Min, Hong Hye Jin, Kim Young-Mo, Koh Won-Gun, Lim Jae-Yol

机构信息

Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea.

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.

出版信息

Acta Biomater. 2016 Nov;45:121-132. doi: 10.1016/j.actbio.2016.08.058. Epub 2016 Sep 1.

Abstract

UNLABELLED

Development of a tissue-engineered, salivary bio-gland will benefit patients suffering from xerostomia due to loss of fluid-secreting acinar cells. This study was conducted to develop a bioengineering system to induce self-assembly of human parotid epithelial cells (hPECs) cultured on poly ethylene glycol (PEG) hydrogel-micropatterned polycaprolactone (PCL) nanofibrous microwells. Microwells were fabricated by photopatterning of PEG hydrogel in the presence of an electrospun PCL nanofibrous scaffold. hPECs were plated on plastic dishes, Matrigel, PCL nanofibers, or PCL nanofibrous microwells. When the cells were plated onto plastic, they did not form spheres, but aggregated to form 3D acinar-like spheroids when cultured on Matrigel, PCL, and PCL microwells, with the greatest aggregating potency being observed on the PCL microwells. The 3D-assembled spheroids in the PCL microwells expressed higher levels of salivary epithelial markers (α-amylase and AQP5), tight junction proteins (ZO-1 and occludin), adherence protein (E-cadherin), and cytoskeletal protein (F-actin) than those on the Matrigel and PCL. Furthermore, the 3D-assembled spheroids in the PCL microwells showed higher levels of α-amylase secretion and intracellular calcium concentration ([Ca]) than those on the Matrigel and PCL nanofibers, suggesting more functional organization of hPECs. We established a bioengineering 3D culture system to promote robust and functional acinar-like organoids from hPECs. PCL nanofibrous microwells can be applied in the future for bioengineering of an artificial bio-salivary gland for restoration of salivary function.

STATEMENT OF SIGNIFICANCE

Three dimensional (3D) cultures of salivary glandular epithelial cells using nanofibrous bottom facilitate the formation of acinar-like organoids. In this study, we adapted a PEG hydrogel-micropatterned PCL nanofibrous microwell for the efficient bioengineering of human salivary gland organoids, in which we could easily produce uniform size of 3D organoids. This 3D culture system supports spherical organization, gene and protein expression of acinar markers, TJ proteins, adherence, and cytoskeletal proteins, as well as to promote epithelial structural integrity and acinar secretory functions, and results showed superior efficiency relative to Matrigel and nanofibrous scaffold culture. This 3D culture system has benefits in terms of inert, non-animal and serum-free culture conditions, as well as controllable spheroid size and scalable production of functional SG organoids and is applicable to bioengineering approaches for an artificial bio-gland, as well as to investigations of salivary gland physiology and regeneration.

摘要

未标注

组织工程化唾液生物腺的开发将使因分泌液体的腺泡细胞丧失而患口干症的患者受益。本研究旨在开发一种生物工程系统,以诱导在聚乙二醇(PEG)水凝胶微图案化聚己内酯(PCL)纳米纤维微孔上培养的人腮腺上皮细胞(hPEC)进行自组装。微孔是通过在静电纺丝的PCL纳米纤维支架存在下对PEG水凝胶进行光图案化制备的。将hPEC接种在塑料培养皿、基质胶、PCL纳米纤维或PCL纳米纤维微孔上。当细胞接种到塑料上时,它们不会形成球体,但在基质胶、PCL和PCL微孔上培养时会聚集形成三维腺泡样球体,在PCL微孔上观察到最大的聚集能力。PCL微孔中的三维组装球体比基质胶和PCL上的球体表达更高水平的唾液上皮标志物(α-淀粉酶和水通道蛋白5)、紧密连接蛋白(ZO-1和闭合蛋白)、黏附蛋白(E-钙黏蛋白)和细胞骨架蛋白(F-肌动蛋白)。此外,PCL微孔中的三维组装球体比基质胶和PCL纳米纤维上的球体显示出更高水平的α-淀粉酶分泌和细胞内钙浓度([Ca]),表明hPEC的功能组织更完善。我们建立了一种生物工程三维培养系统,以促进hPEC形成健壮且功能正常的腺泡样类器官。PCL纳米纤维微孔未来可应用于人工生物唾液腺的生物工程,以恢复唾液功能。

意义声明

使用纳米纤维底部对唾液腺上皮细胞进行三维(3D)培养有助于形成腺泡样类器官。在本研究中,我们采用了PEG水凝胶微图案化的PCL纳米纤维微孔,用于高效生物工程化人唾液腺类器官,在该系统中我们能够轻松生产出大小均匀的三维类器官。这种三维培养系统支持球形组织、腺泡标志物、紧密连接蛋白、黏附蛋白和细胞骨架蛋白的基因和蛋白质表达,以及促进上皮结构完整性和腺泡分泌功能,结果显示相对于基质胶和纳米纤维支架培养具有更高的效率。这种三维培养系统在惰性、无动物和无血清培养条件方面具有优势,以及类球体大小可控且可扩展生产功能性唾液腺类器官,适用于人工生物腺的生物工程方法,以及唾液腺生理学和再生的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验