Suppr超能文献

用于石油烃生物转化的湿地微生物燃料电池中电活性生物膜形成和稳定过程中的聚羟基脂肪酸酯生产

Polyhydroxyalkanoate production during electroactive biofilm formation and stabilization in wetland microbial fuel cells for petroleum hydrocarbon bioconversion.

作者信息

Zhao Lanmei, Sun Mengxue, Lyu Can, Meng Long, Liu Jian, Wang Bo

机构信息

College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.

Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.

出版信息

Synth Syst Biotechnol. 2025 Jan 25;10(2):474-483. doi: 10.1016/j.synbio.2025.01.008. eCollection 2025 Jun.

Abstract

This study presented new insights into the sustainable conversion of total petroleum hydrocarbon (TPHC) into polyhydroxyalkanoates (PHAs) using wetland microbial fuel cells (WMFCs). The main innovations included the following two points: (1) The integration of bioelectricity generation with efficient PHA production further underscored the potential of electroactive biofilms as a sustainable platform for simultaneous TPHC biotransformation, bioelectricity recovery and PHA production. (2) The interactive dynamics of PHAs, metabolites, extracellular polymeric substances (EPS) and microorganisms during the formation and stabilization of electroactive biofilms provided novel insights into microbial strategies for carbon utilization. As the electroactive biofilm formed and stabilized, the current density enhanced significantly from 0 to 101 mA m , then stabilized, and finally dropped to 3.51 mA m. Similarly, the power density showed a trend of increasing in the initial stage, maintaining in the middle stage, and then descending in the later stage. The production of six types of PHAs was identified: poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxyvalerate) [P(3HV)], poly(3-hydroxybutyrate--3-hydroxyvalerate) [P(3HB--3HV)], poly[(R)-3-hydroxybutyrate--(R)-3-hydroxyhexanoate] [P(3HB--3HHX)], poly(3-hydroxyhexadecanoate) [P(3HHD)] and poly(3-hydroxyoctadecanoate) [P(3HOD)], highlighting the metabolic flexibility of electroactive biofilms. The total PHA content was initially undetectable (days 0-4), gradually increased (days 4-28), rose rapidly (days 28-48), gradually increased and descended (days 48-68). The maximum PHA content of 0.664 g g⁻ DCW achieved highlighted the dual functionality of WMFCs in bioelectricity production and PHA biosynthesis, distinguishing it from conventional MFC applications. The TPHC biodegradation ratio demonstrated a gradual increase (days 0-28), with a more pronounced rise (days 28-48), and a gradual rise to 76.1 % (days 48-68). Throughout the process, the metabolite volatile fatty acids (VFAs) produced were primarily acetate, propionate, butyrate and valerate. The trend of VFA production from days 0-56 closely followed that of TPHC biodegradation. The trend of tyrosine/tryptophan proteins in EPS was aligned with that of biofilm thickness. The strong correlation between the increase in the biofilm thickness and the intensity and peak height of tyrosine/tryptophan proteins during the first 20 days suggested that these proteins were integral to the structural integrity of the biofilms, and from days 20-64, the minimal variation in their intensity and peak height indicated that the biofilms had reached a relatively stable state. The biofilms in turn provided a stable microbial substrate and energetic support for the subsequent efficient synthesis of PHA. During the early phase, the dual-function bacteria, such as , , and , prioritized electron transfer and bioelectricity production using available carbon sources. As bioelectricity generation became less critical in the later phase, the bacteria shifted to intracellular PHA accumulation, transitioning from bioelectricity production to PHA biosynthesis. Finally, a comprehensive network connecting functional microorganisms with bioelectricity production, PHA content, TPHC biodegradation, VFA production and EPS peak height was established. Overall, these findings provided valuable insights into the dynamic interactions and metabolic strategies of electroactive biofilms in WMFCs, highlighting their potential for the efficient bioconversion of PHCs into PHAs.

摘要

本研究为利用湿地微生物燃料电池(WMFCs)将总石油烃(TPHC)可持续转化为聚羟基脂肪酸酯(PHA)提供了新的见解。主要创新点包括以下两点:(1)生物发电与高效PHA生产的整合进一步凸显了电活性生物膜作为TPHC生物转化、生物电回收和PHA生产同步进行的可持续平台的潜力。(2)电活性生物膜形成和稳定过程中PHA、代谢物、细胞外聚合物(EPS)和微生物之间的相互作用动力学为微生物碳利用策略提供了新的见解。随着电活性生物膜的形成和稳定,电流密度从0显著增加到101 mA m ,然后稳定下来,最终降至3.51 mA m。同样,功率密度在初始阶段呈上升趋势,中期保持稳定,后期下降。鉴定出六种类型的PHA:聚(3-羟基丁酸酯)[P(3HB)]、聚(3-羟基戊酸酯)[P(3HV)]、聚(3-羟基丁酸酯-3-羟基戊酸酯)[P(3HB-3HV)]、聚[(R)-3-羟基丁酸酯-(R)-3-羟基己酸酯] [P(3HB-3HHX)]、聚(3-羟基十六烷酸酯)[P(3HHD)]和聚(3-羟基十八烷酸酯)[P(3HOD)],突出了电活性生物膜的代谢灵活性。PHA总含量最初不可检测(第0 - 4天),逐渐增加(第4 - 28天),迅速上升(第28 - 48天),逐渐增加然后下降(第48 - 68天)。达到的最大PHA含量0.664 g g⁻ DCW突出了WMFCs在生物发电和PHA生物合成中的双重功能,使其有别于传统的MFC应用。TPHC生物降解率呈逐渐增加趋势(第0 - 28天),上升更为明显(第28 - 48天),并逐渐上升至76.1%(第48 - 68天)。在整个过程中,产生的代谢物挥发性脂肪酸(VFAs)主要是乙酸盐、丙酸盐、丁酸盐和戊酸盐。第0 - 56天VFA产生的趋势与TPHC生物降解的趋势密切相关。EPS中酪氨酸/色氨酸蛋白的趋势与生物膜厚度的趋势一致。生物膜厚度增加与前20天酪氨酸/色氨酸蛋白强度和峰高之间的强相关性表明这些蛋白对生物膜的结构完整性至关重要,而从第20 - 64天,其强度和峰高的最小变化表明生物膜已达到相对稳定的状态。生物膜进而为随后高效合成PHA提供了稳定的微生物底物和能量支持。在早期阶段,诸如 、 、 和 等双功能细菌优先利用可用碳源进行电子传递和生物发电。在后期阶段,随着生物发电变得不那么关键,细菌转向细胞内PHA积累,从生物发电转变为PHA生物合成。最后,建立了一个连接功能微生物与生物发电、PHA含量、TPHC生物降解、VFA产生和EPS峰高的综合网络。总体而言,这些发现为WMFCs中电活性生物膜的动态相互作用和代谢策略提供了有价值的见解,突出了它们将PHCs高效生物转化为PHAs的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd9/11833338/e0b09135f5a9/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验