College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
Sinopec Shengli Petroleum Administration, Dongying 257000, China.
Bioresour Technol. 2022 Sep;360:127581. doi: 10.1016/j.biortech.2022.127581. Epub 2022 Jul 4.
The anode biofilm serves as the core dominating the performance of microbial fuel cell (MFC) biosystem. This research provides new insights into hydrolyzed polyacrylamide (HPAM) biotransformation during the formation of anode biofilm. The current density, coulombic efficiency, voltage, power density, volatile fatty acid (VFA) production and total nitrogen (TN) removal enhanced with the thickening of biofilm (1-6 cm), and the maximums achieved 146 mA·m, 47.3%, 8.76 V, 1.28 W·m, 184 mg·L and 84.6%, respectively. HPAM concentration descended from 508 mg·L to 83.3 mg·L after 60 days. HPAM was metabolized into VFAs, N, NO-N and NO-N, thereby releasing electrons. Laccase and tyrosine/tryptophan protein induced HPAM metabolism and bioelectricity production. The microbial functions involving HPAM biotransformation and bioelectricity generation were clarified. The alternative resource recovery, techno-economic comparison and development direction of MFC biosystem were discussed to achieve the synchronization of HPAM-containing wastewater treatment and bioelectricity generation based on MFC biosystem.
阳极生物膜是微生物燃料电池(MFC)生物系统性能的核心主导因素。本研究深入探讨了在阳极生物膜形成过程中水解聚丙烯酰胺(HPAM)的生物转化。随着生物膜厚度的增加(1-6 厘米),电流密度、库仑效率、电压、功率密度、挥发性脂肪酸(VFA)生成和总氮(TN)去除均得到增强,最大值分别达到 146 mA·m、47.3%、8.76 V、1.28 W·m、184 mg·L 和 84.6%。60 天后,HPAM 浓度从 508 mg·L 下降到 83.3 mg·L。HPAM 被代谢成 VFAs、N、NO-N 和 NO-N,从而释放电子。漆酶和酪氨酸/色氨酸蛋白诱导 HPAM 代谢和生物电能产生。阐明了涉及 HPAM 生物转化和生物电能产生的微生物功能。讨论了 MFC 生物系统的替代资源回收、技术经济比较和发展方向,以实现基于 MFC 生物系统的含 HPAM 废水处理和生物电能产生的同步。