Curthoys Ian S, Zee David S, Dumas Georges, Pastras Christopher J, Dlugaiczyk Julia
Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia.
Departments of Neurology, Neuroscience, Ophthalmology, Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, The Johns Hopkins Hospital, Baltimore, MD, United States.
Front Neurol. 2025 Feb 4;16:1533842. doi: 10.3389/fneur.2025.1533842. eCollection 2025.
In this paper we give an introduction to the area, followed by brief reviews of the neural response to sound and vibration, and then the velocity storage integrator, before putting forward our hypothesis about the neural input to the velocity storage integrator. Finally we discuss some of the implications of our hypothesis. There are two pathways conveying neural information from the vestibular periphery (the semicircular canals and the otoliths) to central neural mechanisms-a direct and an indirect pathway. Within the indirect pathway there is a unique neural mechanism called the velocity storage integrator (VSI) which is part of a neural network generating prolonged nystagmus, afternystagmus and the sensation of self-motion and its converse self-stability. It is our hypothesis that only neural input from primary afferent neurons with irregular resting discharge projects in the direct pathway, whereas the primary afferent input in the indirect pathway consists of neurons with regular resting discharge. The basis for this hypothesis is that vibration is a selective stimulus for vestibular neurons with irregular resting discharge. 100 Hz mastoid vibration, while capable of generating nystagmus (skull vibration induced nystagmus SVIN), is ineffective in generating afternystagmus (in the condition of an encased labyrinth) which is a marker of the action of the VSI, leading to the conclusion that irregular afferents bypass the indirect pathway and the VSI. In order to present this hypothesis we review the evidence that irregular neurons are selectively activated by sound and vibration, whereas regular neurons are not so activated. There are close similarities between the temporal characteristics of the irregular afferent neural response to vibration and the temporal characteristics of SVIN. SVIN is a simple clinical indicator of whether a patient has an imbalance between the two vestibular labyrinths and our hypothesis ties SVIN to irregular primary vestibular neurons.
在本文中,我们先对该领域进行了介绍,接着简要回顾了神经对声音和振动的反应,然后是速度存储积分器,之后才提出我们关于速度存储积分器神经输入的假设。最后,我们讨论了该假设的一些影响。有两条从前庭外周(半规管和耳石)向中枢神经机制传递神经信息的通路——直接通路和间接通路。在间接通路中,有一种独特的神经机制称为速度存储积分器(VSI),它是产生延长性眼震、后继性眼震以及自我运动和相反的自我稳定性感觉的神经网络的一部分。我们的假设是,只有来自静息放电不规则的初级传入神经元的神经输入投射到直接通路中,而间接通路中的初级传入输入则由静息放电规则的神经元组成。这个假设的依据是,振动是静息放电不规则的前庭神经元的选择性刺激。100赫兹的乳突振动虽然能够产生眼震(颅骨振动诱发眼震,SVIN),但在产生后继性眼震(在封闭迷路的情况下)方面无效,而后继性眼震是VSI作用的一个标志,这导致了不规则传入纤维绕过间接通路和VSI的结论。为了阐述这个假设,我们回顾了不规则神经元被声音和振动选择性激活而规则神经元未被如此激活的证据。不规则传入神经对振动的反应的时间特征与SVIN的时间特征之间有密切的相似性。SVIN是患者两个前庭迷路之间是否失衡的一个简单临床指标,我们的假设将SVIN与不规则的初级前庭神经元联系起来。