Yuan Ya-Jing, Chen Tingting, Yang Yan-Ling, Han Hao-Nan, Xu Li-Ming
Department of Anesthesia, Tianjin Medical University Cancer Institute &Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin, China.
Department of Radiation Oncology, Tianjin Medical University Cancer Institute &Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin, China.
Clin Transl Med. 2025 Feb;15(2):e70197. doi: 10.1002/ctm2.70197.
The integrity of brain function is at stake due to cerebral ischemia-reperfusion injury (CIRI), which encompasses mitochondrial dysfunction, autophagy, and neuroinflammation. The role of E2F1 in mediating these processes in microglia during CIRI remains unclear.
A CIRI mouse model was utilized for single-cell RNA transcriptome sequencing of brain tissues. The research comprised diverse gene expression, gene ontology (GO), and the enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Experimental techniques included oxygen-glucose deprivation (OGD/R) cell models, RT-qPCR, Western Blot, ChIP assays, and microglia-neuron co-cultures.
A significant aspect highlighted in the study was the involvement of CDK5 in the induction of mitochondrial abnormalities associated with CIRI. Upregulation of E2F1 and CDK5 in post-CIRI microglia was observed. E2F1 facilitated CDK5 transcription, leading to DRP1 phosphorylation, exacerbating neurotoxic effects. Silencing E2F1 improved neurobehavioral outcomes in CIRI mice.
Activation of E2F1-mediated CDK5 drives mitochondrial division while inhibiting mitophagy in microglia, triggering inflammation, neuronal apoptosis, and exacerbating CIRI damage. Targeting this pathway could offer novel therapeutic strategies for mitigating CIRI-induced brain injury.
Identification of the E2F1/CDK5/DRP1 Axis in CIRI This study reveals that the E2F1 transcription factor upregulates CDK5 expression, which in turn phosphorylates DRP1, promoting excessive mitochondrial fission and inhibiting mitophagy in microglia. This mechanism plays a critical role in cerebral ischemia-reperfusion injury (CIRI). Mitochondrial Dysfunction and Neuroinflammation The activation of DRP1 leads to mitochondrial fragmentation and excessive ROS accumulation, triggering microglial activation and inflammatory responses, exacerbating neuronal apoptosis and brain injury in CIRI. Therapeutic Potential of E2F1 Silencing Knockdown of E2F1 in microglia effectively reduces mitochondrial damage, restores mitophagy, suppresses inflammation, and improves neurological outcomes in a CIRI mouse model, highlighting a promising therapeutic target for ischemic stroke intervention.
脑缺血再灌注损伤(CIRI)会危及脑功能的完整性,其包括线粒体功能障碍、自噬和神经炎症。E2F1在CIRI期间小胶质细胞介导这些过程中的作用仍不清楚。
利用CIRI小鼠模型对脑组织进行单细胞RNA转录组测序。该研究包括不同的基因表达、基因本体论(GO)以及京都基因与基因组百科全书(KEGG)通路的富集。实验技术包括氧糖剥夺(OGD/R)细胞模型、RT-qPCR、蛋白质免疫印迹法、染色质免疫沉淀实验以及小胶质细胞-神经元共培养。
该研究突出的一个重要方面是CDK5参与诱导与CIRI相关的线粒体异常。观察到CIRI后小胶质细胞中E2F1和CDK5上调。E2F1促进CDK5转录,导致动力相关蛋白1(DRP1)磷酸化,加剧神经毒性作用。沉默E2F1改善了CIRI小鼠的神经行为结果。
E2F1介导的CDK5激活驱动线粒体分裂,同时抑制小胶质细胞中的线粒体自噬,引发炎症、神经元凋亡,并加剧CIRI损伤。靶向该通路可为减轻CIRI诱导的脑损伤提供新的治疗策略。
在CIRI中鉴定E2F1/CDK5/DRP1轴
本研究表明,E2F1转录因子上调CDK5表达,进而使DRP1磷酸化,促进小胶质细胞中过度的线粒体裂变并抑制线粒体自噬。该机制在脑缺血再灌注损伤(CIRI)中起关键作用。
线粒体功能障碍与神经炎症
DRP1的激活导致线粒体碎片化和过量活性氧积累,触发小胶质细胞激活和炎症反应,加剧CIRI中的神经元凋亡和脑损伤。
E2F1沉默的治疗潜力
在CIRI小鼠模型中,小胶质细胞中E2F1的敲低有效减少线粒体损伤,恢复线粒体自噬,抑制炎症,并改善神经学结果,突出了其作为缺血性中风干预的有前景的治疗靶点。