Martínez R Fernando, Escolar Ana M, Pardo-Botello Rosario, Durán-Valle Carlos J, Adame-Pereira Marta, Fernandez Rivas David, Cintas Pedro
Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain.
Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain.
Ultrason Sonochem. 2025 Mar;114:107274. doi: 10.1016/j.ultsonch.2025.107274. Epub 2025 Feb 15.
This research article describes the thermal and sonochemical enhancements of 1,3-diol protection, via acetal formation, catalyzed by a biomass-derived heterogeneous catalyst. This investigation was also conducted under the framework of a postgraduate program in green chemistry, and the application of ultrasonic activation represented an opportunity to expose the field to junior colleagues unaware of sonochemistry. Accordingly, we show not only a facile and high-yielding synthetic transformation, but also the pluses of performing a parallel protocol using low-frequency ultrasound, which provided new learning tools and skills in context. The main role of sound waves can be associated to enhanced mass transfer of the heterogeneous reaction (false sonochemistry). Acoustic energy was delivered into the reagents and solvent using so-called cavitation intensifying bags (CIB). The micropitted polymeric material enabled a greater focused radiation that proved to be highly reproducible at 25 °C and led to reaction completion much faster than the conventional external heating. Furthermore, sonication fine-tunes selectivity in ketal formation, as witnessed by a facile synthesis of solketal, a green solvent obtained by acetalization of glycerol. The pedagogical benefits of conveying education in sonochemistry are outlined, alongside the catalyst characterization of the ultrasound-driven reaction. Our ambition is to stimulate similar pursuits in synthesis and catalysis at other laboratories and educational institutions.
这篇研究文章描述了通过生物质衍生的非均相催化剂催化,经由缩醛形成实现1,3 -二醇保护的热增强和超声化学增强。这项研究也是在绿色化学研究生项目的框架下进行的,超声活化的应用为向不了解声化学的年轻同事介绍该领域提供了契机。因此,我们不仅展示了一种简便且高产的合成转化方法,还展示了使用低频超声执行平行方案的优点,这在实际应用中提供了新的学习工具和技能。声波的主要作用可能与非均相反应的传质增强有关(伪声化学)。使用所谓的空化增强袋(CIB)将声能传递到试剂和溶剂中。这种微坑聚合物材料能够实现更集中的辐射,事实证明在25°C时具有高度可重复性,并且比传统外部加热更快地使反应完成。此外,超声处理可微调缩酮形成中的选择性,通过甘油缩醛化得到的绿色溶剂索拉酮的简便合成就证明了这一点。文章概述了声化学教育的教学益处,以及超声驱动反应的催化剂表征。我们的目标是激发其他实验室和教育机构在合成与催化方面开展类似的研究。