Suppr超能文献

一项使用人工智能技术进行心脏病预测的广泛实验分析。

An extensive experimental analysis for heart disease prediction using artificial intelligence techniques.

作者信息

Rohan D, Reddy G Pradeep, Kumar Y V Pavan, Prakash K Purna, Reddy Ch Pradeep

机构信息

School of Computer Science and Engineering, VIT-AP University, Amaravati, 522241, Andhra Pradesh, India.

Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.

出版信息

Sci Rep. 2025 Feb 20;15(1):6132. doi: 10.1038/s41598-025-90530-1.

Abstract

The heart is an important organ that plays a crucial role in maintaining life. Unfortunately, heart disease is one of the major causes of mortality globally. Early and accurate detection can significantly improve the situation by enabling preventive measures and personalized healthcare recommendations. Artificial intelligence is emerging as a powerful tool for healthcare applications, particularly in predicting heart diseases. Researchers are actively working on this, but challenges remain in achieving accurate heart disease prediction. Therefore, experimenting with various models to identify the most effective one for heart disease prediction is crucial. In this view, this paper addresses this need by conducting an extensive investigation of various models. The proposed research considered 11 feature selection techniques and 21 classifiers for the experiment. The feature selection techniques considered for the research are Information Gain, Chi-Square Test, Fisher Discriminant Analysis (FDA), Variance Threshold, Mean Absolute Difference (MAD), Dispersion Ratio, Relief, LASSO, Random Forest Importance, Linear Discriminant Analysis (LDA), and Principal Component Analysis (PCA). The classifiers considered for the research are Logistic Regression, Decision Tree, Random Forest, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Gaussian Naïve Bayes (GNB), XGBoost, AdaBoost, Stochastic Gradient Descent (SGD), Gradient Boosting Classifier, Extra Tree Classifier, CatBoost, LightGBM, Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional LSTM (BiLSTM), Bidirectional GRU (BiGRU), Convolutional Neural Network (CNN), and Hybrid Model (CNN, RNN, LSTM, GRU, BiLSTM, BiGRU). Among all the extensive experiments, XGBoost outperformed all others, achieving an accuracy of 0.97, precision of 0.97, sensitivity of 0.98, specificity of 0.98, F1 score of 0.98, and AUC of 0.98.

摘要

心脏是维持生命的重要器官,在全球范围内,心脏病是主要死因之一。早期准确检测能够通过采取预防措施和提供个性化医疗建议显著改善病情。人工智能正成为医疗保健应用中的强大工具,尤其是在预测心脏病方面。研究人员正积极开展这方面工作,但在实现准确的心脏病预测方面仍存在挑战。因此,试验各种模型以确定最有效的心脏病预测模型至关重要。鉴于此,本文通过对各种模型进行广泛研究来满足这一需求。所提出的研究在实验中考虑了11种特征选择技术和21种分类器。研究中考虑的特征选择技术有信息增益、卡方检验、费希尔判别分析(FDA)、方差阈值、平均绝对差(MAD)、离散率、Relief、LASSO、随机森林重要性、线性判别分析(LDA)和主成分分析(PCA)。研究中考虑的分类器有逻辑回归、决策树、随机森林、K近邻(KNN)、支持向量机(SVM)、高斯朴素贝叶斯(GNB)、XGBoost、AdaBoost、随机梯度下降(SGD)、梯度提升分类器、极端随机树分类器、CatBoost、LightGBM、多层感知器(MLP)、循环神经网络(RNN)、长短期记忆(LSTM)、门控循环单元(GRU)、双向LSTM(BiLSTM)、双向GRU(BiGRU)、卷积神经网络(CNN)和混合模型(CNN、RNN、LSTM、GRU、BiLSTM、BiGRU)。在所有广泛的实验中,XGBoost的表现优于其他所有模型,准确率达到0.97,精确率为0.97,灵敏度为0.98,特异性为0.98,F1分数为0.98,曲线下面积(AUC)为0.98。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14a9/11839996/432f639e11e6/41598_2025_90530_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验