Suppr超能文献

一种使用人工神经网络和爬虫搜索算法来增强径流估计的新型混合模型的开发。

Development of a new hybrid model to enhance streamflow estimation using artificial neural network and reptile search algorithm.

作者信息

Bahmani Mohammad Javad, Kayhomayoon Zahra, Milan Sami Ghordoyee, Hassani Farhad, Malekpoor Mohammadreza, Berndtsson Ronny

机构信息

Department of Water Resources Engineering, Faculty of Civil Engineering, Azad University, Tehran, Iran.

Department of Geology, Payame Noor University, Tehran, Iran.

出版信息

Sci Rep. 2025 Feb 19;15(1):6098. doi: 10.1038/s41598-025-90550-x.

Abstract

A new metaheuristic optimizer combined with artificial neural networks is proposed for streamflow prediction. Hence, the study aimed to forecast monthly streamflow of the main rivers in Urmia, Iran, by considering data shortage and using artificial neural network (ANN) models. By combining three variables: temperature, precipitation, and streamflow, we formulated five patterns, where 70% of the data were used for model training, and 30% for model testing. To improve the performance of ANN, we evaluated a new optimization algorithm, reptile search algorithm (RSA), and compared the results with combinations of ANN, particle swarm optimization algorithm (PSO), and whale optimization algorithm (WOA) models. The results of the ANN + RSA were promising at most stations and patterns. At Band station streamflow simulation testing gave RMSE, MAE, and NSE of 1.65, 1.21 MCM/month, and 0.80, respectively. At Babaroud station they were 4.01, 3.0 MCM/month and 0.68, respectively, at Nazlo station 5.62, 3.79 MCM/month, and 0.69, respectively, and at Tapik station 5.69, 3.82 MCM/month, and 0.59, respectively. However, the results of the ANN + PSO hybrid model were better than ANN + RSA. The impact of different parameters on the accuracy of streamflow prediction varied depending on model and streamflow station, indicating that the models do not perform consistently across different locations, times, and conditions. The inclusion of lagged monthly streamflow in the model was an influential input parameter. The results demonstrated that the new algorithm consistently improved predictions, enhancing the performance of traditional algorithms. The findings of this study highlight advantage of the ANN + RSA hybrid model for specific areas, suggesting its potential application in other similar hydrological problems for further validation.

摘要

本文提出了一种结合人工神经网络的新型元启发式优化器用于径流预测。因此,本研究旨在通过考虑数据短缺问题并使用人工神经网络(ANN)模型来预测伊朗乌尔米亚主要河流的月径流量。通过结合温度、降水和径流这三个变量,我们制定了五种模式,其中70%的数据用于模型训练,30%用于模型测试。为了提高人工神经网络的性能,我们评估了一种新的优化算法——爬行动物搜索算法(RSA),并将结果与人工神经网络、粒子群优化算法(PSO)和鲸鱼优化算法(WOA)模型的组合进行了比较。人工神经网络+爬行动物搜索算法(ANN+RSA)的结果在大多数站点和模式下都很有前景。在班德站,径流模拟测试的均方根误差(RMSE)、平均绝对误差(MAE)和纳什效率系数(NSE)分别为1.65、1.21百万立方米/月和0.80。在巴巴鲁德站,它们分别为4.01、3.0百万立方米/月和0.68,在纳兹洛站分别为5.62、3.79百万立方米/月和0.69,在塔皮克站分别为5.69、3.82百万立方米/月和0.59。然而,人工神经网络+粒子群优化算法(ANN+PSO)混合模型的结果优于人工神经网络+爬行动物搜索算法(ANN+RSA)。不同参数对径流预测准确性的影响因模型和径流站而异,这表明这些模型在不同地点、时间和条件下的表现并不一致。将滞后月径流量纳入模型是一个有影响的输入参数。结果表明,新算法持续改进了预测,提高了传统算法的性能。本研究结果突出了人工神经网络+爬行动物搜索算法(ANN+RSA)混合模型在特定区域的优势,表明其在其他类似水文问题中的潜在应用有待进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/11840020/9e09076d56eb/41598_2025_90550_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验