文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于CT影像组学的食管癌术前病理分期预测模型

A preoperative pathological staging prediction model for esophageal cancer based on CT radiomics.

作者信息

Li Haojun, Liang Shuoming, Cui Mengxuan, Jin Weiqiu, Jiang Xiaofeng, Lu Simiao, Xiong Jicheng, Chen Hainan, Wang Ziwei, Wang Guotai, Xu Jiming, Li Linfeng, Wang Yao, Qing Haomiao, Han Yongtao, Leng Xuefeng

机构信息

Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.

School of Clinical Medicine, Chengdu Medical College, Chengdu, China.

出版信息

BMC Cancer. 2025 Feb 19;25(1):298. doi: 10.1186/s12885-025-13697-w.


DOI:10.1186/s12885-025-13697-w
PMID:39972430
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11841142/
Abstract

BACKGROUND: Accurate and comprehensive preoperative staging is one of the most important prognostic factors for the management of esophageal cancer (EC). We aimed to develop and validate predictive models using radiomics from preoperative contrast-enhanced Computed Tomography (CT) images to assess pathological staging in EC patients. METHODS: This study retrospectively included 161 patients who underwent esophagectomy at Sichuan Cancer Hospital from July 2018 to February 2023. Pathological staging outcomes encompassed overall TNM staging, T and N staging, and tumor progressions (vascular invasion and perineural invasion). Radiomics features were extracted from segmented regions of tumors. A radiomic signature (Rad-signature) for each outcome was developed using a fivefold cross-validation least absolute shrinkage and selection operator (LASSO) regression model within the training cohort and subsequently validated in the test cohort for predictive accuracy. RESULTS: Out of the 851 radiomics features extracted, two were selected to formulate the Rad-signature for each staging outcome. These signatures showed a significant correlation with their respective outcomes in both the training set and the testing set. Furthermore, the Rad-signature exhibited favorable predictive performance for advanced pTNM staging, advanced pT staging, vascular invasion and perineural invasion, with AUC of 0.721 [95%CI, 0.570-0.872], 0.900 [95%CI 0.805-0.995], 0.824 [0.686-0.961], and 0.737 [0.586-0.887], respectively. However, the predictive performance of the Rad-signature for pN staging is moderate (AUC = 0.693 [0.534-0.852]), indicating needs for additional data modalities. CONCLUSIONS: This study established a non-invasive preoperative radiomics model that demonstrated good predictive performance in determining the pTNM staging, pT staging, vascular invasion, and perineural invasion for EC patients. These results could inform personalized treatment strategies and improve outcomes for EC patients.

摘要

背景:准确而全面的术前分期是食管癌(EC)治疗中最重要的预后因素之一。我们旨在开发并验证基于术前增强计算机断层扫描(CT)图像的放射组学预测模型,以评估EC患者的病理分期。 方法:本研究回顾性纳入了2018年7月至2023年2月在四川省肿瘤医院接受食管癌切除术的161例患者。病理分期结果包括总体TNM分期、T和N分期以及肿瘤进展情况(血管侵犯和神经周围侵犯)。从肿瘤的分割区域中提取放射组学特征。使用训练队列中的五折交叉验证最小绝对收缩和选择算子(LASSO)回归模型为每个结果建立放射组学特征(Rad-signature),随后在测试队列中验证其预测准确性。 结果:在提取的851个放射组学特征中,为每个分期结果选择了两个特征来构建Rad-signature。这些特征在训练集和测试集中均与其各自的结果显示出显著相关性。此外,Rad-signature在预测晚期pTNM分期、晚期pT分期、血管侵犯和神经周围侵犯方面表现出良好的预测性能,其曲线下面积(AUC)分别为0.721 [95%置信区间(CI),0.570 - 0.872]、0.900 [95%CI 0.805 - 0.995]、0.824 [0.686 - 0.961]和0.737 [0.586 - 0.887]。然而,Rad-signature对pN分期的预测性能中等(AUC = 0.693 [0.534 - 0.852]),表明需要更多的数据模式。 结论:本研究建立了一种非侵入性术前放射组学模型,该模型在确定EC患者的pTNM分期、pT分期、血管侵犯和神经周围侵犯方面表现出良好的预测性能。这些结果可为个性化治疗策略提供依据,并改善EC患者的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e0/11841142/5ccc08991d0f/12885_2025_13697_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e0/11841142/60fe55575dc6/12885_2025_13697_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e0/11841142/1d0b0b7e09c5/12885_2025_13697_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e0/11841142/72377b57fa3e/12885_2025_13697_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e0/11841142/5ccc08991d0f/12885_2025_13697_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e0/11841142/60fe55575dc6/12885_2025_13697_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e0/11841142/1d0b0b7e09c5/12885_2025_13697_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e0/11841142/72377b57fa3e/12885_2025_13697_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e0/11841142/5ccc08991d0f/12885_2025_13697_Fig4_HTML.jpg

相似文献

[1]
A preoperative pathological staging prediction model for esophageal cancer based on CT radiomics.

BMC Cancer. 2025-2-19

[2]
Computed tomography-based radiomics nomogram for prediction of lympho-vascular and perineural invasion in esophageal squamous cell cancer patients: a retrospective cohort study.

Cancer Imaging. 2024-10-4

[3]
A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer.

Radiat Oncol. 2020-10-29

[4]
Dual-phase contrast-enhanced CT-based intratumoral and peritumoral radiomics for preoperative prediction of lymphovascular invasion in gastric cancer.

BMC Med Imaging. 2025-2-10

[5]
Radiomics Nomogram Based on Optimal Volume of Interest Derived from High-Resolution CT for Preoperative Prediction of IASLC Grading in Clinical IA Lung Adenocarcinomas: A Multi-Center, Large-Population Study.

Technol Cancer Res Treat. 2024

[6]
Preoperative identification of small metastatic lymph nodes in esophageal squamous cell carcinoma using CT radiomics of lymph nodes.

Abdom Radiol (NY). 2025-3

[7]
A prognostic nomogram for T3N0M0 esophageal squamous cell carcinoma patients undergoing radical surgery based on computed tomography radiomics and inflammatory nutritional biomarkers.

J Appl Clin Med Phys. 2024-11

[8]
CT-based radiomics model for predicting perineural invasion status in gastric cancer.

Abdom Radiol (NY). 2025-5

[9]
Development and validation of a CT based radiomics nomogram for preoperative prediction of ISUP/WHO grading in renal clear cell carcinoma.

Abdom Radiol (NY). 2025-3

[10]
Machine learning model to preoperatively predict T2/T3 staging of laryngeal and hypopharyngeal cancer based on the CT radiomic signature.

Eur Radiol. 2024-8

本文引用的文献

[1]
Cancer incidence and mortality in China, 2022.

J Natl Cancer Cent. 2024-2-2

[2]
Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma.

Front Oncol. 2024-2-23

[3]
Radiomics-clinical nomogram for preoperative lymph node metastasis prediction in esophageal carcinoma.

Br J Radiol. 2024-2-28

[4]
CT radiomics in the identification of preoperative understaging in patients with clinical stage T1-2N0 esophageal squamous cell carcinoma.

Quant Imaging Med Surg. 2023-12-1

[5]
Preoperative prediction of clinical and pathological stages for patients with esophageal cancer using PET/CT radiomics.

Insights Imaging. 2023-10-15

[6]
Oesophageal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up.

Ann Oncol. 2022-10

[7]
Influence of Lymphangio vascular (V) and perineural (N) invasion on survival of patients with resected esophageal squamous cell carcinoma (ESCC): a single-center retrospective study.

PeerJ. 2022

[8]
Computed Tomography-Based Radiomics in Predicting T Stage and Length of Esophageal Squamous Cell Carcinoma.

Front Oncol. 2021-10-14

[9]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[10]
CT radiomics features to predict lymph node metastasis in advanced esophageal squamous cell carcinoma and to discriminate between regional and non-regional lymph node metastasis: a case control study.

Quant Imaging Med Surg. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索