Wang Jianan, Verkerk Arie O, Wilders Ronald, Zhang Yingnan, Zhang Kelly, Prakosa Adityo, Rivaud Mathilde R, Marsman E Madelief J, Boender Arie R, Klerk Mischa, Fokkert Lianne, de Jonge Berend, Neef Klaus, Kirzner Osne F, Bezzina Connie R, Remme Carol Ann, Tan Hanno L, Boukens Bastiaan J, Devalla Harsha D, Trayanova Natalia A, Christoffels Vincent M, Barnett Phil, Boink Gerard J J
Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
Eur Heart J. 2025 May 7;46(18):1747-1762. doi: 10.1093/eurheartj/ehaf053.
Life-threatening arrhythmias are a well-established consequence of reduced cardiac sodium current (INa). Gene therapy approaches to increase INa have demonstrated potential benefits to prevent arrhythmias. However, the development of such therapies is hampered by the large size of sodium channels. In this study, SCN10A-short (S10s), a short transcript encoding the carboxy-terminal domain of the human neuronal sodium channel, was evaluated as a gene therapy target to increase INa and prevent arrhythmias.
Adeno-associated viral vector overexpressing S10s was injected into wild type and Scn5a-haploinsufficient mice on which patch-clamp studies, optical mapping, electrocardiogram analyses, and ischaemia reperfusion were performed. In vitro and in silico studies were conducted to further explore the effect of S10s gene therapy in the context of human hearts.
Cardiac S10s overexpression increased cellular INa, maximal action potential upstroke velocity, and action potential amplitude in Scn5a-haploinsufficient cardiomyocytes. S10s gene therapy rescues conduction slowing in Scn5a-haploinsufficient mice and prevented ventricular tachycardia induced by ischaemia-reperfusion in wild type mice. S10s overexpression increased maximal action potential upstroke velocity in human inducible pluripotent stem cell-derived cardiomyocytes and prevented inducible arrhythmias in simulated human heart models.
S10s gene therapy may be effective to treat cardiac conduction abnormalities and associated arrhythmias.
威胁生命的心律失常是心脏钠电流(INa)降低的一个公认后果。增加INa的基因治疗方法已显示出预防心律失常的潜在益处。然而,此类疗法的开发受到钠通道体积庞大的阻碍。在本研究中,评估了编码人神经元钠通道羧基末端结构域的短转录本SCN10A-short(S10s)作为增加INa和预防心律失常的基因治疗靶点。
将过表达S10s的腺相关病毒载体注射到野生型和Scn5a单倍体不足的小鼠体内,对其进行膜片钳研究、光学标测、心电图分析和缺血再灌注实验。进行了体外和计算机模拟研究,以进一步探索S10s基因治疗在人类心脏中的作用。
心脏S10s过表达增加了Scn5a单倍体不足的心肌细胞中的细胞INa、最大动作电位上升速度和动作电位幅度。S10s基因治疗挽救了Scn5a单倍体不足小鼠的传导减慢,并预防了野生型小鼠缺血再灌注诱导的室性心动过速。S10s过表达增加了人诱导多能干细胞衍生心肌细胞中的最大动作电位上升速度,并预防了模拟人类心脏模型中的可诱导性心律失常。
S10s基因治疗可能对治疗心脏传导异常及相关心律失常有效。