Suppr超能文献

数字化与个性化:心脏数字孪生如何改变心脏病人的护理方式。

Up digital and personal: How heart digital twins can transform heart patient care.

机构信息

Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland.

Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland.

出版信息

Heart Rhythm. 2024 Jan;21(1):89-99. doi: 10.1016/j.hrthm.2023.10.019. Epub 2023 Oct 21.

Abstract

Precision medicine is the vision of health care where therapy is tailored to each patient. As part of this vision, digital twinning technology promises to deliver a digital representation of organs or even patients by using tools capable of simulating personal health conditions and predicting patient or disease trajectories on the basis of relationships learned both from data and from biophysics knowledge. Such virtual replicas would update themselves with data from monitoring devices and medical tests and assessments, reflecting dynamically the changes in our health conditions and the responses to treatment. In precision cardiology, the concepts and initial applications of heart digital twins have slowly been gaining popularity and the trust of the clinical community. In this article, we review the advancement in heart digital twinning and its initial translation to the management of heart rhythm disorders.

摘要

精准医疗是医疗保健的愿景,即根据每个患者的情况制定治疗方案。作为这一愿景的一部分,数字孪生技术有望通过使用能够模拟个人健康状况的工具,以及根据从数据和生物物理知识中学习到的关系来预测患者或疾病轨迹,为器官甚至患者提供数字表示。这样的虚拟副本将使用来自监测设备和医疗测试和评估的数据进行更新,动态反映我们健康状况的变化以及对治疗的反应。在精准心脏病学中,心脏数字孪生的概念和初步应用已经慢慢获得了临床社区的认可和信任。本文综述了心脏数字孪生技术的进展及其在心律失常管理中的初步应用。

相似文献

2
Digital twins for cardiac electrophysiology: state of the art and future challenges.心脏电生理学的数字孪生:现状与未来挑战。
Herzschrittmacherther Elektrophysiol. 2024 Jun;35(2):118-123. doi: 10.1007/s00399-024-01014-0. Epub 2024 Apr 12.
9
Digital Twins in Type 1 Diabetes: A Systematic Review.1型糖尿病中的数字孪生:一项系统综述
J Diabetes Sci Technol. 2024 Jun 17:19322968241262112. doi: 10.1177/19322968241262112.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验