Xu Jie, Yang Yuting, Dai Qingyu, Zheng Zhangyu, Cao Yongjie, Cheng Yuwen, Peng Bo, Ma Lianbo, Wang Yonggang
School of Materials Science and Engineering, Key Laboratory of Efficient Conversion and Solid-state Storage of Hydrogen & Electricity of Anhui Province, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Ma'anshan, 243002, China.
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
Angew Chem Int Ed Engl. 2025 Apr 25;64(18):e202423118. doi: 10.1002/anie.202423118. Epub 2025 Mar 6.
Aqueous zinc-ion batteries (AZIBs) offer notable advantages in safety and cost-efficiency, but Zn dendrite growth and unstable interfacial reactions hinder their commercial viability. A crucial factor in addressing these challenges lies in optimizing the separator to regulate ion transport and stabilize electrode interfaces. Herein, we propose a covalent organic framework (COF)-based separator with quasi-single-ion conduction, specifically a Zn-substituted sulfonate COF (COF-Zn) membrane, designed to tackle these issues. Featuring a high Zn transference number (0.87) and a thin 25 μm profile, the COF-Zn separator allows for reduced electrolyte usage (20 μL mg) while effectively minimizing cathode dissolution. Its quasi-single-ion conductivity and electronegative properties improve Zn anode's stability by lowering water activity. This separator enables ultra-stable AZIBs, as demonstrated in various full cells including Zn//4,5,9,10-pyrenetetrone (PTO), Zn//I and Zn//VO. Remarkably, the Zn//PTO cell achieves an energy density of 260 Wh kg, 100 % capacity retention under reduced electrolyte conditions, and stable all-weather cycling from -40 to +100 °C with a customized electrolyte.
水系锌离子电池(AZIBs)在安全性和成本效益方面具有显著优势,但锌枝晶生长和不稳定的界面反应阻碍了它们的商业可行性。解决这些挑战的一个关键因素在于优化隔膜以调节离子传输并稳定电极界面。在此,我们提出一种具有准单离子传导性的基于共价有机框架(COF)的隔膜,具体而言是一种锌取代的磺酸盐COF(COF-Zn)膜,旨在解决这些问题。COF-Zn隔膜具有高锌迁移数(0.87)和25μm的薄厚度,可减少电解质用量(20μL mg),同时有效减少阴极溶解。其准单离子导电性和电负性通过降低水活性提高了锌阳极的稳定性。这种隔膜可实现超稳定的水系锌离子电池,在包括Zn//4,5,9,10-芘四酮(PTO)、Zn//I和Zn//VO在内的各种全电池中得到了证明。值得注意的是,Zn//PTO电池实现了260 Wh kg的能量密度,在减少电解质条件下容量保持率为100%,并使用定制电解质在-40至+100°C下实现稳定的全天候循环。