Nunes Adonay S, Patel Siddharth, Oubre Brandon, Jas Mainak, Kulkarni Divya D, Luddy Anna C, Eklund Nicole M, Yang Faye X, Manohar Rohin, Soja Nancy N, Burke Katherine M, Wong Bonnie, Isaev Dmitry, Espinosa Steven, Schmahmann Jeremy D, Stephen Christopher D, Wills Anne-Marie, Hung Albert, Dickerson Bradford C, Berry James D, Arnold Steven E, Khurana Vikram, White Lawrence, Sapiro Guillermo, Gajos Krzysztof Z, Khan Sheraz, Gupta Anoopum S
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
medRxiv. 2025 Feb 6:2024.12.28.24319527. doi: 10.1101/2024.12.28.24319527.
Quantitative analysis of human behavior is critical for objective characterization of neurological phenotypes, early detection of neurodegenerative diseases, and development of more sensitive measures of disease progression to support clinical trials and translation of new therapies into clinical practice. Sophisticated computational modeling can support these objectives, but requires large, information-rich data sets. This work introduces Neurobooth, a customizable platform for time-synchronized multimodal capture of human behavior. Over a two year period, a Neurobooth implementation integrated into a clinical setting facilitated data collection across multiple behavioral domains from a cohort of 470 individuals (82 controls and 388 with neurologic diseases) who participated in a collective 782 sessions. Visualization of the multimodal time series data demonstrates the presence of rich phenotypic signs across a range of diseases. These data and the open-source platform offer potential for advancing our understanding of neurological diseases and facilitating therapy development, and may be a valuable resource for related fields that study human behavior.
人类行为的定量分析对于神经表型的客观表征、神经退行性疾病的早期检测以及开发更敏感的疾病进展测量方法以支持临床试验和将新疗法转化为临床实践至关重要。复杂的计算模型可以支持这些目标,但需要大量信息丰富的数据集。这项工作引入了Neurobooth,这是一个用于人类行为时间同步多模态捕获的可定制平台。在两年时间里,一个集成到临床环境中的Neurobooth实施促进了来自470名个体(82名对照和388名患有神经系统疾病)的队列在多个行为领域的数据收集,这些个体共参与了782次会议。多模态时间序列数据的可视化展示了一系列疾病中丰富的表型特征。这些数据和开源平台为推进我们对神经系统疾病的理解和促进治疗开发提供了潜力,并且可能是研究人类行为的相关领域的宝贵资源。
Alzheimers Dement. 2021-4
2025-1
Cochrane Database Syst Rev. 2024-10-29
Cochrane Database Syst Rev. 2021-10-27
Int J Lang Commun Disord. 2024
J Neuroeng Rehabil. 2024-1-13
Curr Opin Biomed Eng. 2019-3
Nat Med. 2023-10