Suppr超能文献

使用深度学习模型对小脑性言语异常进行灵敏量化

Sensitive Quantification of Cerebellar Speech Abnormalities Using Deep Learning Models.

作者信息

Vattis Kyriakos, Oubre Brandon, Luddy Anna C, Ouillon Jessey S, Eklund Nicole M, Stephen Christopher D, Schmahmann Jeremy D, Nunes Adonay S, Gupta Anoopum S

机构信息

Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.

Harvard Medical School, Boston, MA 02115, USA.

出版信息

IEEE Access. 2024;12:62328-62340. doi: 10.1109/access.2024.3393243. Epub 2024 Apr 24.

Abstract

Objective, sensitive, and meaningful disease assessments are critical to support clinical trials and clinical care. Speech changes are one of the earliest and most evident manifestations of cerebellar ataxias. This work aims to develop models that can accurately identify and quantify clinical signs of ataxic speech. We use convolutional neural networks to capture the motor speech phenotype of cerebellar ataxia based on time and frequency partial derivatives of log-mel spectrogram representations of speech. We train classification models to distinguish patients with ataxia from healthy controls as well as regression models to estimate disease severity. Classification models were able to accurately distinguish healthy controls from individuals with ataxia, including ataxia participants who clinicians rated as having no detectable clinical deficits in speech. Regression models produced accurate estimates of disease severity, were able to measure subclinical signs of ataxia, and captured disease progression over time. Convolutional networks trained on time and frequency partial derivatives of the speech signal can detect sub-clinical speech changes in ataxias and sensitively measure disease change over time. Learned speech analysis models have the potential to aid early detection of disease signs in ataxias and provide sensitive, low-burden assessment tools in support of clinical trials and neurological care.

摘要

客观、灵敏且有意义的疾病评估对于支持临床试验和临床护理至关重要。言语变化是小脑性共济失调最早且最明显的表现之一。这项工作旨在开发能够准确识别和量化共济失调性言语临床体征的模型。我们使用卷积神经网络,基于语音的对数梅尔频谱图表示的时间和频率偏导数来捕捉小脑性共济失调的运动言语表型。我们训练分类模型以区分共济失调患者和健康对照,以及训练回归模型以估计疾病严重程度。分类模型能够准确地区分健康对照和共济失调个体,包括临床医生评定为无明显言语临床缺陷的共济失调参与者。回归模型对疾病严重程度做出了准确估计,能够测量共济失调的亚临床体征,并捕捉疾病随时间的进展。基于语音信号的时间和频率偏导数训练的卷积网络可以检测共济失调中的亚临床言语变化,并灵敏地测量疾病随时间的变化。所学习到的言语分析模型有潜力辅助早期发现共济失调的疾病体征,并提供灵敏、低负担的评估工具以支持临床试验和神经科护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bff/11601984/7b31a8f614c6/nihms-1992286-f0010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验