Suppr超能文献

用于高性能固态锂硫电池的分级碳中间层设计:作为界面稳定剂和固体电解质渗透层

Hierarchical Carbon Interlayer Design as Interfacial Stabilizer and Solid-Electrolyte Infiltrate for High-Performance Solid-State Li-S Batteries.

作者信息

Pan Ludi, Zhao Wenbin, Zhai Liqing, Guo Ruiqi, Zhao Yuying, Wang Xinran, Wu Chuan, Bai Ying

机构信息

School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P R China.

Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P R China.

出版信息

Chem Bio Eng. 2024 Apr 17;1(4):340-348. doi: 10.1021/cbe.4c00040. eCollection 2024 May 23.

Abstract

A great deal of attention has been paid to lithium-sulfur (Li-S) batteries due to their high energy density (>2600 Wh kg), elemental abundance, and environmental friendliness, which show great application prospects in a wide range of energy storage systems. However, the shuttle effect caused by traditional liquid electrolyte remains a problem handicapping the development of the Li-S battery. polymerized gel polymer electrolytes (GPEs) with high ionic conductivity, high-voltage stability, and interfacial compatibility are spotlighted to solve the shuttle effect for better electrochemical performance. Here, we use Al(OTf) to initiate DOL ring-opening polymerization to form GPEs. A hierarchical carbon interlayer, comprised of superaligned carbon nanotubes and Super P, was rationally organized with size exclusion effect (0.76 nm) to strengthen the interface stability and conversion of soluble lithium polysulfides for higher sulfur utilization. GPEs with ionic conductivity up to 1.74 mS cm and low interfacial impedance at room temperature are proposed, which infiltrate into the demonstrated hierarchical carbon interlayer to form HC@PP separators. The Li-S battery using the HC@PP separator exhibits higher sulfur utilization and discharge capacities (1332 mAh g), improved rate capability, and 80% capacity retention at 1 C after 150 cycles, greatly surpassing the interlayer-free solid-state Li-S battery. Our work provides a promising polymerization strategy of GPEs with compatible hierarchical carbon interlayers design and its intrinsic interface regulation for a high-performance solid-state Li-S battery.

摘要

由于锂硫(Li-S)电池具有高能量密度(>2600 Wh kg)、元素丰富且环境友好等特性,在广泛的储能系统中展现出巨大的应用前景,因此受到了广泛关注。然而,传统液体电解质引起的穿梭效应仍然是阻碍锂硫电池发展的一个问题。具有高离子电导率、高电压稳定性和界面兼容性的聚合凝胶聚合物电解质(GPEs)成为解决穿梭效应以实现更好电化学性能的研究热点。在此,我们使用三氟甲磺酸铝(Al(OTf))引发1,3-二氧戊环(DOL)开环聚合以形成GPEs。由超对齐碳纳米管和超级P组成的分级碳中间层通过尺寸排阻效应(0.76 nm)合理构建,以增强界面稳定性并促进可溶性多硫化锂的转化,从而提高硫利用率。我们提出了室温下离子电导率高达1.74 mS cm且界面阻抗较低的GPEs,其渗透到所展示的分级碳中间层中形成HC@PP隔膜。使用HC@PP隔膜的锂硫电池表现出更高的硫利用率和放电容量(1332 mAh g)、改善的倍率性能,以及在1 C下150次循环后80%的容量保持率,大大超越了无中间层的固态锂硫电池。我们的工作为高性能固态锂硫电池提供了一种有前景的GPEs聚合策略,以及与之兼容的分级碳中间层设计及其内在界面调控方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c8/11835175/bc70de1d761f/be4c00040_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验