Suppr超能文献

使用crumblr快速、灵活地分析细胞组成差异。

Fast, flexible analysis of differences in cellular composition with crumblr.

作者信息

Hoffman Gabriel E, Roussos Panos

机构信息

Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

bioRxiv. 2025 Jan 31:2025.01.29.635498. doi: 10.1101/2025.01.29.635498.

Abstract

Changes in cell type composition play an important role in human health and disease. Recent advances in single-cell technology have enabled the measurement of cell type composition at increasing cell lineage resolution across large cohorts of individuals. Yet this raises new challenges for statistical analysis of these compositional data to identify changes in cell type frequency. We introduce crumblr (DiseaseNeurogenomics.github.io/crumblr), a scalable statistical method for analyzing count ratio data using precision-weighted linear mixed models incorporating random effects for complex study designs. Uniquely, crumblr performs statistical testing at multiple levels of the cell lineage hierarchy using a multivariate approach to increase power over tests of one cell type. In simulations, crumblr increases power compared to existing methods while controlling the false positive rate. We demonstrate the application of crumblr to published single-cell RNA-seq datasets for aging, tuberculosis infection in T cells, bone metastases from prostate cancer, and SARS-CoV-2 infection.

摘要

细胞类型组成的变化在人类健康和疾病中起着重要作用。单细胞技术的最新进展使得能够在越来越高的细胞谱系分辨率下测量大量个体队列中的细胞类型组成。然而,这给这些组成数据的统计分析带来了新的挑战,以识别细胞类型频率的变化。我们引入了crumblr(DiseaseNeurogenomics.github.io/crumblr),这是一种可扩展的统计方法,用于使用精度加权线性混合模型分析计数比率数据,该模型为复杂的研究设计纳入了随机效应。独特的是,crumblr使用多变量方法在细胞谱系层次结构的多个层面上进行统计检验,以提高相对于单一细胞类型检验的功效。在模拟中,与现有方法相比,crumblr在控制假阳性率的同时提高了功效。我们展示了crumblr在已发表的单细胞RNA测序数据集上的应用,这些数据集涉及衰老、T细胞中的结核感染、前列腺癌的骨转移和SARS-CoV-2感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afa4/11838391/51c0b4272f7c/nihpp-2025.01.29.635498v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验