Suppr超能文献

通过计算对接、药效团建模和机器学习发现新型HER2抑制剂

Discovery of New HER2 Inhibitors via Computational Docking, Pharmacophore Modeling, and Machine Learning.

作者信息

Matrouk Aseel Yasin, Mohammad Haneen, Daoud Safa, Taha Mutasem Omar

机构信息

Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, 11942, Jordan.

Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Sciences Private University, Amman, Jordan.

出版信息

Mol Inform. 2025 Feb;44(2):e202400336. doi: 10.1002/minf.202400336.

Abstract

The human epidermal growth factor receptor 2 (HER2) is a critical oncogene implicated in the development of various aggressive cancers, particularly breast cancer. Discovering novel HER2 inhibitors is crucial for expanding therapeutic options for HER2-related malignancies. In this study, we present a computational workflow that focuses on generating pharmacophores derived from docked poses of a selected list of 15 diverse, potent HER2 inhibitors, utilizing flexible docking. The resulting pharmacophores, along with other physicochemical molecular descriptors, were then evaluated in a machine learning-quantitative structure-activity relationship (ML-QSAR) analysis against 1,272 HER2 inhibitors. Several machine learning methods were assessed, and a genetic function algorithm (GFA) was employed for feature selection. Ultimately, GFA combined with Bagging and J48Graft classifiers produced the best self-consistent and predictive models. These models highlighted the significance of two pharmacophores, Hypo_1 and Hypo_2, in distinguishing potent from less active inhibitors. The successful ML-QSAR models and their associated pharmacophores were used to screen the National Cancer Institute (NCI) database for novel HER2 inhibitors. Three promising anti-HER2 leads were identified, with the top-performing lead demonstrating an experimental anti-HER2 IC value of 3.85 μM. Notably, the three inhibitors exhibited distinct chemical scaffolds compared to existing HER2 inhibitors, as indicated by principal component analysis.

摘要

人表皮生长因子受体2(HER2)是一种关键的致癌基因,与多种侵袭性癌症尤其是乳腺癌的发生发展有关。发现新型HER2抑制剂对于扩大HER2相关恶性肿瘤的治疗选择至关重要。在本研究中,我们提出了一种计算工作流程,该流程聚焦于利用柔性对接从15种不同的强效HER2抑制剂的选定列表的对接构象中生成药效团。然后,在针对1272种HER2抑制剂的机器学习定量构效关系(ML-QSAR)分析中评估所得的药效团以及其他物理化学分子描述符。评估了几种机器学习方法,并采用遗传函数算法(GFA)进行特征选择。最终,GFA与Bagging和J48Graft分类器相结合产生了最佳的自洽和预测模型。这些模型突出了两种药效团Hypo_1和Hypo_2在区分强效抑制剂和活性较低的抑制剂方面的重要性。成功的ML-QSAR模型及其相关的药效团被用于在国家癌症研究所(NCI)数据库中筛选新型HER2抑制剂。鉴定出了三种有前景的抗HER2先导化合物,表现最佳的先导化合物的实验性抗HER2 IC值为3.85 μM。值得注意的是,如主成分分析所示,这三种抑制剂与现有的HER2抑制剂相比具有不同的化学支架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验