Suppr超能文献

基于配体的药效团建模与机器学习用于发现新型化学类型的强效极光A激酶抑制先导化合物。

Ligand-based pharmacophore modeling and machine learning for the discovery of potent aurora A kinase inhibitory leads of novel chemotypes.

作者信息

Banat Rajaa, Daoud Safa, Taha Mutasem Omar

机构信息

Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.

Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Sciences Private University, Amman, Jordan.

出版信息

Mol Divers. 2024 Dec;28(6):4241-4257. doi: 10.1007/s11030-024-10814-y. Epub 2024 Mar 6.

Abstract

Aurora-A (AURKA) is serine/threonine protein kinase involved in the regulation of numerous processes of cell division. Numerous studies have demonstrated strong association between AURKA and cancer. AURKA is overexpressed in many cancers, such as colon, breast and prostate cancers. Consequently, AURKA has emerged as promising target for therapeutic intervention in cancer management. Herein, we describe a computational workflow for the discovery of novel anti-AURKA inhibitory leads starting with ligand-based assessment of the pharmacophoric space of six diverse sets of inhibitors. Subsequently, machine learning/QSAR modeling was coupled with genetic function algorithm to search for the best possible combination of machine learner, ligand-based pharmacophore(s) and molecular descriptors capable of explaining variation in anti-AURKA bioactivities within a collected list of inhibitors. Two learners succeeded in achieving acceptable structure/activity correlations, namely, random forests and extreme gradient boosting (XGBoost). Three pharmacophores emerged in the successful ML models. These were then used as 3D search queries to mine the National Cancer Institute database for novel anti-AURKA leads. Top-ranking 38 hits were assessed in vitro for their anti-AURKA bioactivities. Among them, three compounds exhibited promising dose-response curves, demonstrating experimental IC values ranging from sub-micromolar to low micromolar values. Remarkably, two of these compounds are of novel chemotypes.

摘要

极光激酶A(AURKA)是一种丝氨酸/苏氨酸蛋白激酶,参与细胞分裂众多过程的调控。大量研究表明AURKA与癌症之间存在密切关联。AURKA在许多癌症中过度表达,如结肠癌、乳腺癌和前列腺癌。因此,AURKA已成为癌症治疗干预的一个有前景的靶点。在此,我们描述了一种计算工作流程,用于发现新型抗AURKA抑制性先导化合物,该流程从基于配体对六组不同抑制剂的药效团空间进行评估开始。随后,将机器学习/定量构效关系(QSAR)建模与遗传函数算法相结合,以寻找能够解释所收集抑制剂列表中抗AURKA生物活性变化的最佳机器学习器、基于配体的药效团和分子描述符组合。有两种机器学习器成功实现了可接受的结构/活性相关性,即随机森林和极端梯度提升(XGBoost)。在成功的机器学习模型中出现了三种药效团。然后将这些用作三维搜索查询,在国立癌症研究所数据库中挖掘新型抗AURKA先导化合物。对排名靠前的38个命中化合物进行了体外抗AURKA生物活性评估。其中,三种化合物表现出有前景的剂量反应曲线,实验测得的半数抑制浓度(IC)值范围为亚微摩尔至低微摩尔。值得注意的是,其中两种化合物具有新型化学结构类型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验