Suppr超能文献

利用机器学习预测聚合物药物递送系统中的药物释放。

Utilizing machine learning for predicting drug release from polymeric drug delivery systems.

作者信息

Aghajanpour Sareh, Amiriara Hamid, Esfandyari-Manesh Mehdi, Ebrahimnejad Pedram, Jeelani Haziq, Henschel Andreas, Singh Hemant, Dinarvand Rassoul, Hassan Shabir

机构信息

Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.

Department of Electrical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Mazandaran, Iran.

出版信息

Comput Biol Med. 2025 Apr;188:109756. doi: 10.1016/j.compbiomed.2025.109756. Epub 2025 Feb 19.

Abstract

Polymeric drug delivery systems (PDDS) play a crucial role in controlled drug release, providing improved therapeutic outcomes. However, formulating PDDS and predicting their release profiles remain challenging due to their complex structures and the numerous variables that influence their behavior. Traditional mathematical and empirical prediction methods are limited in capturing these complexities. Recent studies have unveiled the potential of Machine Learning (ML) in revolutionizing drug delivery, particularly in formulating complex PDDS. This article provides an overview of the significant and fundamental principles of various ML strategies in estimating PDDS drug release behavior. Our focus extends to the accomplishments and pivotal discoveries in current research, spanning seven distinct sustained-release drug delivery systems: matrix tablets, microspheres, implants, hydrogels, films, 3D-printed dosage forms, and other innovations. Furthermore, it addresses the challenges associated with ML-based drug release prediction and presents current solutions while delving into future perspectives. Our investigation underscores the significance of Artificial Neural Networks in ML-based PDDS release profile prediction, surpassing both traditional and alternative ML-based methods. These extensive datasets can be drawn from literature-based resources or enhanced through specific algorithms. Moreover, ensemble-based models have proven advantageous in scenarios involving intricate relationships, such as a high number of output parameters. ML-based drug release prediction notably exhibits substantial promise in 3D-printed dosage forms, presenting a frontier for personalized medicine and precise drug delivery.

摘要

聚合物药物递送系统(PDDS)在药物控释中起着至关重要的作用,可提供更好的治疗效果。然而,由于其结构复杂以及影响其行为的众多变量,制备PDDS并预测其释放曲线仍然具有挑战性。传统的数学和经验预测方法在捕捉这些复杂性方面存在局限性。最近的研究揭示了机器学习(ML)在革新药物递送方面的潜力,特别是在制备复杂的PDDS方面。本文概述了各种ML策略在估计PDDS药物释放行为方面的重要基本原理。我们的重点扩展到当前研究中的成果和关键发现,涵盖七种不同的缓释药物递送系统:基质片剂、微球、植入剂、水凝胶、薄膜、3D打印剂型以及其他创新。此外,它还解决了基于ML的药物释放预测相关的挑战,并在深入探讨未来前景的同时介绍了当前的解决方案。我们的研究强调了人工神经网络在基于ML的PDDS释放曲线预测中的重要性,超过了传统的和基于ML的替代方法。这些广泛的数据集可以从基于文献的资源中获取,或通过特定算法进行增强。此外,基于集成的模型在涉及复杂关系的场景中已证明具有优势,例如大量的输出参数。基于ML的药物释放预测在3D打印剂型中尤其显示出巨大的潜力,为个性化医疗和精准药物递送开辟了一个前沿领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验