Suppr超能文献

结合基于多路复用门的读出技术和隔离的互补金属氧化物半导体量子点阵列。

Combining multiplexed gate-based readout and isolated CMOS quantum dot arrays.

作者信息

Hamonic Pierre, Nurizzo Martin, Nath Jayshankar, Dartiailh Matthieu C, Elhomsy Victor, Fragnol Mathis, Martinez Biel, Julliard Pierre-Louis, Cardoso Paz Bruna, Ouvrier-Buffet Mathilde, Filippini Jean-Baptiste, Bertrand Benoit, Niebojewski Heimanu, Bäuerle Christopher, Vinet Maud, Balestro Franck, Meunier Tristan, Urdampilleta Matias

机构信息

Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France.

Quobly, Grenoble, France.

出版信息

Nat Commun. 2025 Jul 9;16(1):6323. doi: 10.1038/s41467-025-61556-w.

Abstract

Semiconductor quantum dot arrays are a promising platform to perform spin-based error-corrected quantum computation with large numbers of qubits. However, due to the diverging number of possible charge configurations combined with the limited sensitivity of large-footprint charge sensors, achieving single-spin occupancy in each dot in a growing quantum dot array is exceedingly complex. Therefore, to scale-up a spin-based architecture we must change how individual charges are readout and controlled. Here, we demonstrate single-spin occupancy of each dot in a foundry-fabricated array by combining two methods. 1/ Loading a finite number of electrons into the quantum dot array; simplifying electrostatic tuning by isolating the array from the reservoirs. 2/ Deploying multiplex gate-based reflectometry to dispersively probe charge tunneling and spin states without charge sensors or reservoirs. Our isolated arrays probed by embedded multiplex readout can be readily electrostatically tuned. They are thus a viable, scalable approach for spin-based quantum architectures.

摘要

半导体量子点阵列是一个很有前景的平台,可用于执行基于自旋的、具有大量量子比特的纠错量子计算。然而,由于可能的电荷配置数量不断增加,再加上大面积电荷传感器的灵敏度有限,在不断增长的量子点阵列中实现每个量子点的单自旋占据极其复杂。因此,为了扩大基于自旋的架构规模,我们必须改变单个电荷的读出和控制方式。在这里,我们通过结合两种方法,展示了在工厂制造的阵列中每个量子点的单自旋占据情况。1/ 将有限数量的电子加载到量子点阵列中;通过将阵列与储库隔离来简化静电调谐。2/ 部署基于多路复用门的反射测量法,以在没有电荷传感器或储库的情况下分散探测电荷隧穿和自旋态。我们通过嵌入式多路复用读出探测的隔离阵列可以很容易地进行静电调谐。因此,它们是基于自旋的量子架构的一种可行、可扩展的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2960/12241478/f36deaba64f0/41467_2025_61556_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验