Suppr超能文献

基于基线外周血参数的艾日布林治疗乳腺癌患者总生存期和无进展生存期预测模型的开发与内部验证

Development and internal validation of a predictive model of overall and progression-free survival in eribulin-treated patients with breast cancer based on baseline peripheral blood parameters.

作者信息

Natori Keiko, Igeta Masataka, Morimoto Takashi, Nagahashi Masayuki, Akashi-Tanaka Sadako, Daimon Takashi, Miyoshi Yasuo

机构信息

Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan.

Department of Breast Surgery, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo, 162-8666, Japan.

出版信息

Breast Cancer. 2025 May;32(3):500-511. doi: 10.1007/s12282-025-01678-7. Epub 2025 Feb 20.

Abstract

BACKGROUND

Immune and inflammatory blood parameters have been reported as biomarkers for treatment efficacy. This study aimed to establish a predictive model that includes blood parameters for patients with metastatic breast cancer treated with eribulin.

METHODS

A total of 297 patients were enrolled, and their baseline neutrophil-to-lymphocyte ratio, absolute lymphocyte count (ALC), platelet-to-lymphocyte ratio (PLR), prognostic nutritional index (PNI), lymphocyte-to-monocyte ratio (LMR), lactate dehydrogenase (LDH), C-reactive protein (CRP), and clinical data were retrospectively collected.

RESULTS

We constructed nomograms to predict overall survival (OS) and progression-free survival (PFS) using blood parameters, including clinical factors. For OS, menopausal status, hormone receptor status, HER2 status, de novo or recurrent, metastatic site, treatment line, ALC, PLR, PNI, LMR, LDH, and CRP were selected to predict the model. We used menopausal status, hormone receptor status, HER2 status, treatment line, PLR, LMR, LDH, and CRP to predict PFS. Both the OS and PFS of patients according to the risk scores were significantly different (p < 0.001). The optimism-corrected C-indices of the nomograms for OS and PFS were 0.680 and 0.622, respectively. The mean time-dependent area under the receiver operating curve values for OS at 1, 2, and 3 years were 0.752, 0.761, and 0.784, respectively, and for PFS at 3, 6, and 12 months were 0.660, 0.661, and 0.650, respectively.

CONCLUSION

Nomograms incorporating peripheral blood parameters may improve the accuracy of predicting OS and PFS in patients treated with eribulin. Our prediction model may help decision-making for breast cancer patients who are considering eribulin treatment.

摘要

背景

免疫和炎症血液参数已被报道为治疗效果的生物标志物。本研究旨在建立一个包含血液参数的预测模型,用于接受艾瑞布林治疗的转移性乳腺癌患者。

方法

共纳入297例患者,回顾性收集其基线中性粒细胞与淋巴细胞比值、绝对淋巴细胞计数(ALC)、血小板与淋巴细胞比值(PLR)、预后营养指数(PNI)、淋巴细胞与单核细胞比值(LMR)、乳酸脱氢酶(LDH)、C反应蛋白(CRP)及临床资料。

结果

我们构建了列线图,使用包括临床因素在内的血液参数预测总生存期(OS)和无进展生存期(PFS)。对于OS,选择绝经状态、激素受体状态、HER2状态、初发或复发、转移部位、治疗线数、ALC、PLR、PNI、LMR、LDH和CRP来预测模型。我们使用绝经状态、激素受体状态、HER2状态、治疗线数、PLR、LMR、LDH和CRP来预测PFS。根据风险评分,患者的OS和PFS均有显著差异(p < 0.001)。OS和PFS列线图的乐观校正C指数分别为0.680和0.622。OS在1年、2年和3年时的平均时间依赖性受试者工作特征曲线下面积值分别为0.752、0.761和,0.784,PFS在3个月、6个月和12个月时分别为0.660、0.661和0.650。

结论

纳入外周血参数的列线图可能提高艾瑞布林治疗患者OS和PFS预测的准确性。我们的预测模型可能有助于为考虑接受艾瑞布林治疗的乳腺癌患者提供决策依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca2b/11993485/e773f4f082e8/12282_2025_1678_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验