Natori Keiko, Igeta Masataka, Morimoto Takashi, Nagahashi Masayuki, Akashi-Tanaka Sadako, Daimon Takashi, Miyoshi Yasuo
Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan.
Department of Breast Surgery, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo, 162-8666, Japan.
Breast Cancer. 2025 May;32(3):500-511. doi: 10.1007/s12282-025-01678-7. Epub 2025 Feb 20.
Immune and inflammatory blood parameters have been reported as biomarkers for treatment efficacy. This study aimed to establish a predictive model that includes blood parameters for patients with metastatic breast cancer treated with eribulin.
A total of 297 patients were enrolled, and their baseline neutrophil-to-lymphocyte ratio, absolute lymphocyte count (ALC), platelet-to-lymphocyte ratio (PLR), prognostic nutritional index (PNI), lymphocyte-to-monocyte ratio (LMR), lactate dehydrogenase (LDH), C-reactive protein (CRP), and clinical data were retrospectively collected.
We constructed nomograms to predict overall survival (OS) and progression-free survival (PFS) using blood parameters, including clinical factors. For OS, menopausal status, hormone receptor status, HER2 status, de novo or recurrent, metastatic site, treatment line, ALC, PLR, PNI, LMR, LDH, and CRP were selected to predict the model. We used menopausal status, hormone receptor status, HER2 status, treatment line, PLR, LMR, LDH, and CRP to predict PFS. Both the OS and PFS of patients according to the risk scores were significantly different (p < 0.001). The optimism-corrected C-indices of the nomograms for OS and PFS were 0.680 and 0.622, respectively. The mean time-dependent area under the receiver operating curve values for OS at 1, 2, and 3 years were 0.752, 0.761, and 0.784, respectively, and for PFS at 3, 6, and 12 months were 0.660, 0.661, and 0.650, respectively.
Nomograms incorporating peripheral blood parameters may improve the accuracy of predicting OS and PFS in patients treated with eribulin. Our prediction model may help decision-making for breast cancer patients who are considering eribulin treatment.
免疫和炎症血液参数已被报道为治疗效果的生物标志物。本研究旨在建立一个包含血液参数的预测模型,用于接受艾瑞布林治疗的转移性乳腺癌患者。
共纳入297例患者,回顾性收集其基线中性粒细胞与淋巴细胞比值、绝对淋巴细胞计数(ALC)、血小板与淋巴细胞比值(PLR)、预后营养指数(PNI)、淋巴细胞与单核细胞比值(LMR)、乳酸脱氢酶(LDH)、C反应蛋白(CRP)及临床资料。
我们构建了列线图,使用包括临床因素在内的血液参数预测总生存期(OS)和无进展生存期(PFS)。对于OS,选择绝经状态、激素受体状态、HER2状态、初发或复发、转移部位、治疗线数、ALC、PLR、PNI、LMR、LDH和CRP来预测模型。我们使用绝经状态、激素受体状态、HER2状态、治疗线数、PLR、LMR、LDH和CRP来预测PFS。根据风险评分,患者的OS和PFS均有显著差异(p < 0.001)。OS和PFS列线图的乐观校正C指数分别为0.680和0.622。OS在1年、2年和3年时的平均时间依赖性受试者工作特征曲线下面积值分别为0.752、0.761和,0.784,PFS在3个月、6个月和12个月时分别为0.660、0.661和0.650。
纳入外周血参数的列线图可能提高艾瑞布林治疗患者OS和PFS预测的准确性。我们的预测模型可能有助于为考虑接受艾瑞布林治疗的乳腺癌患者提供决策依据。