人工智能与乳腺癌管理:从数据到临床

Artificial Intelligence and Breast Cancer Management: From Data to the Clinic.

作者信息

Feng Kaixiang, Yi Zongbi, Xu Binghe

机构信息

Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University Wuhan Hubei China.

Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center Zhongnan Hospital of Wuhan University Wuhan Hubei China.

出版信息

Cancer Innov. 2025 Feb 20;4(2):e159. doi: 10.1002/cai2.159. eCollection 2025 Apr.

Abstract

Breast cancer (BC) remains a significant threat to women's health worldwide. The oncology field had an exponential growth in the abundance of medical images, clinical information, and genomic data. With its continuous advancement and refinement, artificial intelligence (AI) has demonstrated exceptional capabilities in processing intricate multidimensional BC-related data. AI has proven advantageous in various facets of BC management, encompassing efficient screening and diagnosis, precise prognosis assessment, and personalized treatment planning. However, the implementation of AI into precision medicine and clinical practice presents ongoing challenges that necessitate enhanced regulation, transparency, fairness, and integration of multiple clinical pathways. In this review, we provide a comprehensive overview of the current research related to AI in BC, highlighting its extensive applications throughout the whole BC cycle management and its potential for innovative impact. Furthermore, this article emphasizes the significance of constructing patient-oriented AI algorithms. Additionally, we explore the opportunities and potential research directions within this burgeoning field.

摘要

乳腺癌(BC)仍然是全球女性健康的重大威胁。肿瘤学领域在医学图像、临床信息和基因组数据的丰富性方面呈指数级增长。随着其不断发展和完善,人工智能(AI)在处理复杂的多维BC相关数据方面展现出卓越能力。人工智能已在BC管理的各个方面证明具有优势,包括高效筛查和诊断、精确预后评估以及个性化治疗规划。然而,将人工智能应用于精准医学和临床实践仍面临持续挑战,需要加强监管、提高透明度、确保公平性以及整合多种临床路径。在本综述中,我们全面概述了当前与BC中人工智能相关的研究,突出其在整个BC周期管理中的广泛应用及其创新影响潜力。此外,本文强调构建以患者为导向的人工智能算法的重要性。此外,我们还探讨了这个新兴领域的机遇和潜在研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/11840326/b3e9b1b1d333/CAI2-4-e159-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索