Suppr超能文献

微小RNA守门人:调控根际动态

MicroRNA gatekeepers: Orchestrating rhizospheric dynamics.

作者信息

Fahad Muhammad, Tariq Leeza, Li Wanchang, Wu Liang

机构信息

Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, 572000, China.

Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.

出版信息

J Integr Plant Biol. 2025 Mar;67(3):845-876. doi: 10.1111/jipb.13860. Epub 2025 Feb 21.

Abstract

The rhizosphere plays a crucial role in plant growth and resilience to biotic and abiotic stresses, highlighting the complex communication between plants and their dynamic rhizosphere environment. Plants produce a wide range of signaling molecules that facilitate communication with various rhizosphere factors, yet our understanding of these mechanisms remains elusive. In addition to protein-coding genes, increasing evidence underscores the critical role of microRNAs (miRNAs), a class of non-coding single-stranded RNA molecules, in regulating plant growth, development, and responses to rhizosphere stresses under diverse biotic and abiotic factors. In this review, we explore the crosstalk between miRNAs and their target mRNAs, which influence the development of key plant structures shaped by the belowground environment. Moving forward, more focused studies are needed to clarify the functions and expression patterns of miRNAs, to uncover the common regulatory mechanisms that mediate plant tolerance to rhizosphere dynamics. Beyond that, we propose that using artificial miRNAs and manipulating the expression of miRNAs and their targets through overexpression or knockout/knockdown approaches could effectively investigate their roles in plant responses to rhizosphere stresses, offering significant potential for advancing crop engineering.

摘要

根际在植物生长以及对生物和非生物胁迫的抗性方面发挥着关键作用,这凸显了植物与其动态根际环境之间复杂的交流。植物产生多种信号分子,促进与各种根际因子的交流,但我们对这些机制的理解仍然有限。除了蛋白质编码基因外,越来越多的证据强调了微小RNA(miRNA)(一类非编码单链RNA分子)在不同生物和非生物因子作用下调节植物生长、发育以及对根际胁迫反应中的关键作用。在本综述中,我们探讨了miRNA与其靶标mRNA之间的相互作用,这些相互作用影响着由地下环境塑造的关键植物结构的发育。展望未来,需要更有针对性的研究来阐明miRNA的功能和表达模式,以揭示介导植物对根际动态耐受性的共同调控机制。除此之外,我们提出通过人工miRNA以及利用过表达或敲除/敲低方法操纵miRNA及其靶标的表达,可以有效地研究它们在植物对根际胁迫反应中的作用,为推进作物工程提供巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f06/11951408/2ef5c1c3051d/JIPB-67-845-g003.jpg

相似文献

1
MicroRNA gatekeepers: Orchestrating rhizospheric dynamics.
J Integr Plant Biol. 2025 Mar;67(3):845-876. doi: 10.1111/jipb.13860. Epub 2025 Feb 21.
2
MicroRNA: A Dynamic Player from Signalling to Abiotic Tolerance in Plants.
Int J Mol Sci. 2023 Jul 12;24(14):11364. doi: 10.3390/ijms241411364.
3
Rhizospheric crosstalk: A mechanistic overview of how plant secondary metabolites alleviate abiotic stresses.
Plant Sci. 2025 May;354:112431. doi: 10.1016/j.plantsci.2025.112431. Epub 2025 Feb 22.
4
miRNAs for crop improvement.
Plant Physiol Biochem. 2023 Aug;201:107857. doi: 10.1016/j.plaphy.2023.107857. Epub 2023 Jun 24.
5
miRNAs play critical roles in response to abiotic stress by modulating cross-talk of phytohormone signaling.
Plant Cell Rep. 2021 Sep;40(9):1617-1630. doi: 10.1007/s00299-021-02736-y. Epub 2021 Jun 22.
6
Underground communication: Long non-coding RNA signaling in the plant rhizosphere.
Plant Commun. 2024 Jul 8;5(7):100927. doi: 10.1016/j.xplc.2024.100927. Epub 2024 Apr 27.
7
MicroRNA: a new target for improving plant tolerance to abiotic stress.
J Exp Bot. 2015 Apr;66(7):1749-61. doi: 10.1093/jxb/erv013. Epub 2015 Feb 19.
8
Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation.
BMC Plant Biol. 2020 Oct 12;20(1):466. doi: 10.1186/s12870-020-02595-x.
10
MiR398 and plant stress responses.
Physiol Plant. 2011 Sep;143(1):1-9. doi: 10.1111/j.1399-3054.2011.01477.x. Epub 2011 May 19.

本文引用的文献

1
Rhizospheric miRNAs affect the plant microbiota.
ISME Commun. 2024 Oct 12;4(1):ycae120. doi: 10.1093/ismeco/ycae120. eCollection 2024 Jan.
2
Bioengineering for robust tolerance against cold and drought stresses via co-overexpressing three Cu-miRNAs in major food crops.
Cell Rep. 2024 Oct 22;43(10):114828. doi: 10.1016/j.celrep.2024.114828. Epub 2024 Oct 4.
3
MiR319a-mediated salt stress response in poplar.
Hortic Res. 2024 Jun 7;11(8):uhae157. doi: 10.1093/hr/uhae157. eCollection 2024 Aug.
5
Overexpression of SQUAMOSA promoter binding protein-like 4a (NtSPL4a) alleviates Cd toxicity in Nicotiana tabacum.
Plant Physiol Biochem. 2024 May;210:108656. doi: 10.1016/j.plaphy.2024.108656. Epub 2024 Apr 23.
6
Underground communication: Long non-coding RNA signaling in the plant rhizosphere.
Plant Commun. 2024 Jul 8;5(7):100927. doi: 10.1016/j.xplc.2024.100927. Epub 2024 Apr 27.
7
Sulfate Availability and Hormonal Signaling in the Coordination of Plant Growth and Development.
Int J Mol Sci. 2024 Apr 3;25(7):3978. doi: 10.3390/ijms25073978.
8
A microRNA528-ZmLac3 module regulates low phosphate tolerance in maize.
Plant J. 2024 Jun;118(6):2233-2248. doi: 10.1111/tpj.16741. Epub 2024 Apr 3.
9
Switching action modes of miR408-5p mediates auxin signaling in rice.
Nat Commun. 2024 Mar 21;15(1):2525. doi: 10.1038/s41467-024-46765-z.
10
miR164-MhNAC1 regulates apple root nitrogen uptake under low nitrogen stress.
New Phytol. 2024 May;242(3):1218-1237. doi: 10.1111/nph.19663. Epub 2024 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验