Atanasoff-Kardjalieff Anna K, Steinert Katharina, Bergander Klaus, Kalinina Svetlana, Studt-Reinhold Lena
Institute of Microbial Genetics Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Strasse 24, 3430, Tulln an der Donau, Austria.
Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany.
Chembiochem. 2025 Apr 1;26(7):e202401039. doi: 10.1002/cbic.202401039. Epub 2025 Apr 4.
Ascomycete fungi of the genus Fusarium are found in manifold ecological niches and thus pursue several lifestyles. On average, individual Fusarium species have the genetic capability to produce 50 natural products (NPs), which are in general thought to improve the fungus's fitness in defined environments. This also includes NPs with toxic potential (mycotoxins) contaminating food and feed sources. Recent research has shown that the production of NPs is tightly regulated on the transcriptional level and depends on the delicate balance between the deposition and removal of histone marks. Within this study, we show that the expression of the prior cryptic Fusarium PKS16 biosynthetic gene cluster (BGC) greatly depends on modifications at histone H3 lysine 27 (H3K27). By combining molecular-, chemical-, and bioinformatic analyses we show that the PKS16 BGC from F. fujikuroi B14 (FfB14) consists of nine genes, including a positively acting pathway-specific transcription factor, which although absent in some fusaria, functions in activating other PKS16 cluster genes. Moreover, we linked the PKS16 BGC to the biosynthesis of proliferapyrone (PRO) E, an isomer of the recently isolated PRO A.
镰刀菌属的子囊菌真菌存在于多种生态位中,因此具有多种生活方式。平均而言,单个镰刀菌物种具有产生50种天然产物(NP)的遗传能力,一般认为这些天然产物能提高真菌在特定环境中的适应性。这也包括具有污染食物和饲料源的潜在毒性的天然产物(霉菌毒素)。最近的研究表明,天然产物的产生在转录水平上受到严格调控,并且取决于组蛋白标记沉积和去除之间的微妙平衡。在本研究中,我们表明先前隐秘的镰刀菌PKS16生物合成基因簇(BGC)的表达很大程度上取决于组蛋白H3赖氨酸27(H3K27)的修饰。通过结合分子、化学和生物信息学分析,我们表明来自藤仓镰刀菌B14(FfB14)的PKS16 BGC由九个基因组成,包括一个起正向作用的途径特异性转录因子,该转录因子虽然在一些镰刀菌中不存在,但在激活其他PKS16簇基因中起作用。此外,我们将PKS16 BGC与增殖吡喃酮(PRO)E的生物合成联系起来,PRO E是最近分离出的PRO A的异构体。