Suppr超能文献

核壳催化剂上的纳米限域与串联催化用于将 CO 电化学还原为多碳产物

Nanoconfinement and tandem catalysis over yolk-shell catalysts towards electrochemical reduction of CO to multi-carbon products.

作者信息

Sun Lidan, Zheng Xiaolin, Li Yuanrui, Lin Mianrui, Zeng Xiuli, Yu Jun, Song Zhongxin, Zhang Lei

机构信息

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.

出版信息

J Colloid Interface Sci. 2025 Jun;687:733-741. doi: 10.1016/j.jcis.2025.02.089. Epub 2025 Feb 15.

Abstract

Electrocatalytic materials in the electrochemical reduction of carbon dioxide (COER) provide an effective strategy to mitigate CO emissions, enable carbon recycling, and synthesize high-value multi-carbon (C) chemicals, thereby supporting long-term renewable energy storage. Recent advances highlight that yolk-shell nanostructures, which regulate adsorbed CO intermediates (*CO), offer a promising tandem catalysis pathway to convert CO to C products. In this study, we designed Pd@CuO/CuS yolk-shell catalysts, which demonstrated a Faradaic efficiency (FE) of 81.7 % for C products at -0.8 V vs. RHE, with an FE of 44.7 % for ethanol (CHOH). This performance is attributed to the synergistic interplay between Pd, which efficiently generates *CO intermediates, and Cu surfaces, which facilitate rapid CC coupling to form C products. In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), X-ray absorption spectroscopy (XAS), and density functional theory (DFT) calculations further reveal that Pd and S modulate the reaction energy barrier of the *OCCOH intermediate, steering selectivity toward C products and enabling partial C-to-C conversion. This research offers a strategy for synthesizing Cu-based tandem catalysts and improving C product selectivity of COER.

摘要

用于二氧化碳电化学还原(COER)的电催化材料为减少碳排放、实现碳循环以及合成高价值多碳(C)化学品提供了一种有效策略,从而支持长期可再生能源存储。最近的进展表明,能够调控吸附的CO中间体(CO)的蛋黄壳纳米结构提供了一条将CO转化为含碳产物的有前景的串联催化途径。在本研究中,我们设计了Pd@CuO/CuS蛋黄壳催化剂,在相对于可逆氢电极(RHE)为-0.8 V时,该催化剂对含碳产物的法拉第效率(FE)为81.7%,对乙醇(CH₃CH₂OH)的FE为44.7%。这种性能归因于能够有效生成CO中间体的Pd与促进快速C-C偶联以形成含碳产物的Cu表面之间的协同相互作用。原位衰减全反射表面增强红外吸收光谱(ATR-SEIRAS)、X射线吸收光谱(XAS)和密度泛函理论(DFT)计算进一步表明,Pd和S调节了*OCCOH中间体的反应能垒,引导反应选择性生成含碳产物并实现部分碳到碳的转化。本研究为合成铜基串联催化剂以及提高COER中含碳产物的选择性提供了一种策略。

相似文献

1
Nanoconfinement and tandem catalysis over yolk-shell catalysts towards electrochemical reduction of CO to multi-carbon products.
J Colloid Interface Sci. 2025 Jun;687:733-741. doi: 10.1016/j.jcis.2025.02.089. Epub 2025 Feb 15.
2
Convergence of Tandem Catalysis and Nanoconfinement Promotes Electroreduction of CO to C Products.
ACS Appl Mater Interfaces. 2024 Dec 25;16(51):70587-70595. doi: 10.1021/acsami.4c17083. Epub 2024 Dec 10.
3
Hierarchical Tandem Catalysis Promotes CO Spillover and Trapping for Efficient CO Reduction to C Products.
ACS Nano. 2025 Mar 11;19(9):9304-9316. doi: 10.1021/acsnano.5c00696. Epub 2025 Feb 27.
4
Enriching the Local Concentration of CO Intermediates on Cu Cavities for the Electrocatalytic Reduction of CO to C Products.
ACS Appl Mater Interfaces. 2023 Apr 5;15(13):16673-16679. doi: 10.1021/acsami.2c21902. Epub 2023 Mar 24.
6
Electrochemical Reduction of CO Toward C Valuables on Cu@Ag Core-Shell Tandem Catalyst with Tunable Shell Thickness.
Small. 2021 Sep;17(37):e2102293. doi: 10.1002/smll.202102293. Epub 2021 Aug 3.
7
Synergized Cu/Pb Core/Shell Electrocatalyst for High-Efficiency CO Reduction to C Liquids.
ACS Nano. 2021 Jan 26;15(1):1039-1047. doi: 10.1021/acsnano.0c07869. Epub 2020 Dec 30.
8
Creating interfaces of Cu/Cu in oxide-derived copper catalysts for electrochemical CO reduction to multi-carbon products.
J Colloid Interface Sci. 2023 Sep;645:735-742. doi: 10.1016/j.jcis.2023.04.133. Epub 2023 May 4.
9
Enhanced CO Affinity on Cu Facilitates CO Electroreduction toward Multi-Carbon Products.
Small. 2023 Sep;19(39):e2302530. doi: 10.1002/smll.202302530. Epub 2023 May 31.
10
CuO-Ag Tandem Catalysts for Selective Electrochemical Reduction of CO to C Products.
Molecules. 2021 Apr 9;26(8):2175. doi: 10.3390/molecules26082175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验