Suppr超能文献

基于机器学习算法的腹膜透析中逐次就诊血压变异性与临床结局

Visit-to-visit blood pressure variability and clinical outcomes in peritoneal dialysis - based on machine learning algorithms.

作者信息

Lin Yan, Yi Chunyan, Cao Peiyi, Lin Jianxiong, Chen Wei, Mao Haiping, Yang Xiao, Guo Qunying

机构信息

Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University and Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China.

Yunkang School of Medicine and Health, Nanfang College, Guangzhou, China.

出版信息

Hypertens Res. 2025 May;48(5):1702-1715. doi: 10.1038/s41440-025-02142-x. Epub 2025 Feb 21.

Abstract

This study aims to investigate the association between visit-to-visit blood pressure variability (VVV) in early stage of continuous ambulatory peritoneal dialysis (CAPD) and long-term clinical outcomes, utilizing machine learning algorithms. Patients who initiated CAPD therapy between January 1, 2006, and December 31, 2009 were enrolled. VVV parameters were collected during the first six months of CAPD therapy. Patient follow-up extended to December 31, 2021, for up to 15.8 years. The primary outcome was the occurrence of a three-point major adverse cardiovascular event (MACE). Four machine learning algorithms and competing risk regression analysis were applied to construct predictive models. A total of 666 participants were included in the analysis with a mean age of 47.9 years. One of the six VVV parameters, standard deviation of diastolic blood pressure (SDDBP), was finally enrolled into the MACE predicting model and mortality predicting model. In the MACE predicting model, higher SDDBP was associated with 99% higher MACE risk. The association between SDDBP and MACE risk was attenuated by better residual renal function (p for interaction <0.001). In the mortality predicting model, higher SDDBP was associated with 46% higher mortality risk. This cohort study discerned that high SDDBP in early stage of CAPD indicated increased long-term MACE and mortality risks.

摘要

本研究旨在利用机器学习算法,探讨持续非卧床腹膜透析(CAPD)早期的逐次就诊血压变异性(VVV)与长期临床结局之间的关联。纳入了2006年1月1日至2009年12月31日开始接受CAPD治疗的患者。在CAPD治疗的前六个月收集VVV参数。患者随访至2021年12月31日,最长达15.8年。主要结局是发生三点主要不良心血管事件(MACE)。应用四种机器学习算法和竞争风险回归分析来构建预测模型。共有666名参与者纳入分析,平均年龄为47.9岁。六个VVV参数之一,即舒张压标准差(SDDBP),最终被纳入MACE预测模型和死亡率预测模型。在MACE预测模型中,较高的SDDBP与高99%的MACE风险相关。较好的残余肾功能减弱了SDDBP与MACE风险之间的关联(交互作用p<0.001)。在死亡率预测模型中,较高的SDDBP与高46%的死亡风险相关。这项队列研究发现,CAPD早期的高SDDBP表明长期MACE和死亡风险增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验