Jiang Cong, Talbot Denis, Carazo Sara, Schnitzer Mireille E
Faculty of Pharmacy, Université de Montréal, Montréal, Canada.
Département de médecine sociale et préventive, Université Laval, Quebec City, Canada.
Stat Med. 2025 Feb 28;44(5):e70025. doi: 10.1002/sim.70025.
The test-negative design (TND), which is routinely used for monitoring seasonal flu vaccine effectiveness (VE), has recently become integral to COVID-19 vaccine surveillance, notably in Québec, Canada. Some studies have addressed the identifiability and estimation of causal parameters under the TND, but efficiency bounds for nonparametric estimators of the target parameter under the unconfoundedness assumption have not yet been investigated. Motivated by the goal of improving adjustment for measured confounders when estimating COVID-19 VE among community-dwelling people aged years in Québec, we propose a one-step doubly robust and locally efficient estimator called TNDDR (TND doubly robust), which utilizes cross-fitting (sample splitting) and can incorporate machine learning techniques to estimate the nuisance functions and thus improve control for measured confounders. We derive the efficient influence function (EIF) for the marginal expectation of the outcome under a vaccination intervention, explore the von Mises expansion, and establish the conditions for -consistency, asymptotic normality, and double robustness of TNDDR. The proposed estimator is supported by both theoretical and empirical justifications.
检验阴性设计(TND)通常用于监测季节性流感疫苗效力(VE),最近已成为新冠疫苗监测不可或缺的一部分,尤其是在加拿大魁北克省。一些研究探讨了TND下因果参数的可识别性和估计问题,但在无混杂假设下目标参数非参数估计量的效率界尚未得到研究。受在魁北克省估计60岁及以上社区居民新冠疫苗效力时改善对测量混杂因素调整这一目标的推动,我们提出了一种称为TNDDR(TND双稳健)的一步双稳健且局部有效的估计量,它利用交叉拟合(样本拆分),并可纳入机器学习技术来估计干扰函数,从而改善对测量混杂因素的控制。我们推导了疫苗接种干预下结局边际期望的有效影响函数(EIF),探索了冯·米塞斯展开,并建立了TNDDR的$\sqrt{n}$-一致性、渐近正态性和双稳健性的条件。所提出的估计量得到了理论和实证依据的支持。