Suppr超能文献

GlycoDash:针对大量样本的糖蛋白质组学数据集进行自动化、可视化辅助管理。

GlycoDash: automated, visually assisted curation of glycoproteomics datasets for large sample numbers.

作者信息

Pongracz Tamas, Gijze Steinar, Hipgrave Ederveen Agnes L, Derks Rico J E, Falck David

机构信息

Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

Anal Bioanal Chem. 2025 Apr;417(10):2003-2014. doi: 10.1007/s00216-025-05794-3. Epub 2025 Feb 22.

Abstract

The challenge of robust and automated glycopeptide quantitation from liquid chromatography-mass spectrometry (LC-MS) data has yet to be adequately addressed by commercial software. Recently, open-source tools like Skyline and LaCyTools have advanced the field of label-free MS level quantitation. Yet, important steps late in the data processing workflow remain manual. Because manual data curation is time-consuming and error-prone, it presents a bottleneck, especially in an era of emerging high-throughput methodologies and increasingly complex analyses such as antigen-specific antibody glycosylation. We addressed this gap by developing GlycoDash, an R Shiny-based interactive web application designed to democratize label-free high-throughput glycoproteomics data analysis. The software comes in at a stage where analytes have been identified and quantified, but whole measurement and individual analyte signals of insufficient quality for quantitation remain and reduce the quality of the overall dataset. GlycoDash focuses on these challenges by incorporating several options for measurement and metadata linking, spectral and analyte curation, normalization, and repeatability assessment, and additionally includes glycosylation trait calculation, data visualization, and reporting capabilities that adhere to FAIR principles. The performance and versatility of GlycoDash were demonstrated across antibody glycoproteomics data of increasing complexity, ranging from relatively simple monoclonal antibody glycosylation analysis to a clinical cohort with over a thousand measurements. In a matter of hours, these large, diverse, and complex datasets were curated and explored. High-quality datasets with integrated metadata ready for final analysis and visualization were obtained. Critical aspects of the curation strategy underlying GlycoDash are discussed. GlycoDash effectively automates and streamlines the curation of glycopeptide quantitation data, addressing a critical need for high-throughput glycoproteomics data analysis. Its robust performance across diverse datasets and its comprehensive feature toolbox significantly enhance both research and clinical applications in glycoproteomics.

摘要

液相色谱-质谱(LC-MS)数据的稳健且自动化的糖肽定量分析挑战尚未得到商业软件的充分解决。最近,诸如Skyline和LaCyTools等开源工具推动了无标记质谱水平定量分析领域的发展。然而,数据处理工作流程后期的重要步骤仍需人工操作。由于人工数据整理既耗时又容易出错,它成为了一个瓶颈,尤其是在新兴的高通量方法时代以及诸如抗原特异性抗体糖基化等日益复杂的分析中。我们通过开发GlycoDash来填补这一空白,GlycoDash是一个基于R Shiny的交互式网络应用程序,旨在使无标记高通量糖蛋白质组学数据分析民主化。该软件处于已识别和定量分析物的阶段,但仍存在质量不足以进行定量的整体测量和单个分析物信号,这降低了整个数据集的质量。GlycoDash通过纳入多种测量和元数据链接、光谱和分析物整理、归一化以及重复性评估选项来应对这些挑战,此外还包括符合FAIR原则的糖基化特征计算、数据可视化和报告功能。GlycoDash的性能和通用性在复杂度不断增加的抗体糖蛋白质组学数据中得到了证明,范围从相对简单的单克隆抗体糖基化分析到包含一千多次测量的临床队列。在几个小时内,这些庞大、多样且复杂的数据集就得到了整理和探索。获得了具有集成元数据的高质量数据集,可用于最终分析和可视化。讨论了GlycoDash背后的整理策略的关键方面。GlycoDash有效地自动化并简化了糖肽定量数据的整理,满足了高通量糖蛋白质组学数据分析的关键需求。其在不同数据集上的稳健性能及其全面的功能工具箱显著增强了糖蛋白质组学的研究和临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d3a/11961463/822e2286c247/216_2025_5794_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验