Suppr超能文献

经合组织卫生系统的比较效率分析:数据包络分析与基于效率分析树(EAT和RFEAT)的机器学习方法

Comparative Efficiency Analysis of OECD Health Systems: FDH vs. Machine Learning Approaches with Efficiency Analysis Trees (EAT and RFEAT).

作者信息

Joo Yejin

机构信息

Department of Economics, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea.

出版信息

Cost Eff Resour Alloc. 2025 Feb 22;23(1):4. doi: 10.1186/s12962-025-00607-x.

Abstract

BACKGROUND

As health expenditure continues to rise due to income growth, technological advancements, and an aging population, it has become increasingly important to accurately measure and improve the efficiency of health systems. This is because financial resources are limited, and the allocation of resources can significantly influence the quality of health systems and health outcomes.

METHODS

This study applies machine learning techniques-Efficiency Analysis Trees (EAT) and Random Forest for Efficiency Analysis Trees (RFEAT)-to evaluate the efficiency of health systems in 36 OECD countries, comparing the results with those from the traditional free disposal hull (FDH) method.

RESULTS

Analysis shows high discrimination power in the order of RFEAT, EAT, and FDH. The correlation in efficiency rankings shows more than 80% similarity between RFEAT and EAT, while both show less than 80% similarity with FDH. According to RFEAT estimates, the countries with the highest efficiency are South Korea, Switzerland, and Costa Rica, whereas the United States, Lithuania, and Latvia are identified as the least efficient. The group-level analysis reveals that Asian countries, on average, perform more efficiently followed by Oceania, Europe, and the Americas. The groups with higher out-of-pocket healthcare expenditures per capita tend to show slightly better efficiency and the group with the smallest elderly population proportion exhibits the highest average health system efficiency.

CONCLUSION

Traditional methods like FDH are prone to inefficiency underestimation, especially in small samples with multiple variables. This study demonstrates the potential of machine learning approaches like EAT and RFEAT to provide more reliable efficiency estimates. These methods can help policymakers make better resource allocation decisions by mitigating inefficiency underestimation and offering greater discrimination power.

摘要

背景

随着收入增长、技术进步和人口老龄化导致医疗支出持续上升,准确衡量和提高卫生系统效率变得越来越重要。这是因为财政资源有限,资源分配会显著影响卫生系统的质量和健康结果。

方法

本研究应用机器学习技术——效率分析树(EAT)和用于效率分析树的随机森林(RFEAT)——来评估36个经合组织国家卫生系统的效率,并将结果与传统的自由处置壳(FDH)方法的结果进行比较。

结果

分析表明,RFEAT、EAT和FDH的判别能力依次较高。效率排名的相关性显示,RFEAT和EAT之间的相似度超过80%,而两者与FDH的相似度均低于80%。根据RFEAT的估计,效率最高的国家是韩国、瑞士和哥斯达黎加,而美国、立陶宛和拉脱维亚被认为是效率最低的。组级分析表明,平均而言,亚洲国家的表现更高效,其次是大洋洲、欧洲和美洲。人均自付医疗费用较高的组往往效率略高,老年人口比例最小的组平均卫生系统效率最高。

结论

像FDH这样的传统方法容易低估效率,尤其是在具有多个变量的小样本中。本研究证明了EAT和RFEAT等机器学习方法在提供更可靠的效率估计方面的潜力。这些方法可以通过减少效率低估并提供更大的判别能力,帮助政策制定者做出更好的资源分配决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fd8/11847381/4d63ca47b1c1/12962_2025_607_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验