Suppr超能文献

整合遥感与实地清查以了解城市森林多样性和结构的决定因素。

Integrating remote sensing and field inventories to understand determinants of urban forest diversity and structure.

作者信息

Marcilio-Silva Vinicius, Donovan Sally, Hobbie Sarah E, Guzmán Q J Antonio, Knight Joseph F, Cavender-Bares Jeannine

机构信息

Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA.

Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA.

出版信息

Ecology. 2025 Feb;106(2):e70020. doi: 10.1002/ecy.70020.

Abstract

Understanding the determinants of urban forest diversity and structure is important for preserving biodiversity and sustaining ecosystem services in cities. However, comprehensive field assessments are resource-intensive, and landscape-level approaches may overlook heterogeneity within urban regions. To address this challenge, we combined remote sensing with field inventories to comprehensively map and analyze urban forest attributes in forest patches across the Minneapolis-St. Paul Metropolitan Area (MSPMA) in a multistep process. First, we developed predictive machine learning models of forest attributes by integrating data from forest inventories (from 40 12.5-m-radius plots) with Global Ecosystem Dynamics Investigation (GEDI) observations and Sentinel-2-derived land surface phenology (LSP). These models enabled accurate predictions of forest attributes, specifically nine metrics of plant diversity (tree species richness, tree abundance, and understory plant abundance), structure (average canopy height, dbh, and canopy density), and structural complexity (variability in canopy height, dbh, and canopy density) with relative errors ranging between 11% and 21%. Second, we applied these machine learning models to predict diversity metrics for 804 additional plots from GEDI and Sentinel-2. Finally, we applied Bayesian multilevel models to the predicted diversity metrics to assess the influence of multiple factors-patch dimensions, landscape attributes, plot position, and jurisdictional agency-on these forest attributes across the 804 predicted plots. The models showed all predictors have some degree of effect on forest attributes, presenting varying explanatory power with R values ranging from 0.071 to 0.405. Overall, plot characteristics (e.g., distance to nearest trail, proximity to forest edge) and jurisdictional agency explained a large portion of the variability across patches, whereas patch and landscape characteristics did not. The relative effect of plot versus management sets of predictors on the marginal ΔR was heterogeneous across metrics and ecological subsections (an ecological classification designation). The multiplicity of determinants influencing urban forests emphasizes the intricate nature of urban ecosystems and highlights nuanced, heterogeneous relationships between urban ecological and anthropogenic factors that determine forest properties. Effectively enhancing biodiversity in urban forests requires assessments, management, and conservation strategies tailored for context-specific characteristics.

摘要

了解城市森林多样性和结构的决定因素对于保护生物多样性和维持城市生态系统服务至关重要。然而,全面的实地评估资源密集,而景观层面的方法可能会忽略城市区域内的异质性。为应对这一挑战,我们将遥感与实地调查相结合,通过多步骤过程全面绘制和分析明尼阿波利斯 - 圣保罗都会区(MSPMA)森林斑块中的城市森林属性。首先,我们通过整合森林调查数据(来自40个半径为12.5米的样地)、全球生态系统动力学调查(GEDI)观测数据和哨兵 - 2派生的陆地表面物候(LSP),开发了森林属性的预测机器学习模型。这些模型能够准确预测森林属性,特别是植物多样性的九个指标(树种丰富度、树木丰度和林下植物丰度)、结构(平均树冠高度、胸径和树冠密度)以及结构复杂性(树冠高度、胸径和树冠密度的变异性),相对误差在11%至21%之间。其次,我们应用这些机器学习模型预测来自GEDI和哨兵 - 2的另外804个样地的多样性指标。最后,我们将贝叶斯多级模型应用于预测的多样性指标,以评估多个因素——斑块维度、景观属性、样地位置和管辖机构——对这804个预测样地的这些森林属性的影响。模型显示所有预测因子对森林属性都有一定程度的影响,R值在0.071至0.405之间,呈现出不同的解释力。总体而言,样地特征(例如,到最近步道的距离、与森林边缘的接近程度)和管辖机构解释了斑块间大部分的变异性,而斑块和景观特征则不然。预测因子的样地与管理集对边际ΔR的相对影响在不同指标和生态子区域(一种生态分类指定)中是异质的。影响城市森林的决定因素的多样性强调了城市生态系统的复杂性,并突出了决定森林属性的城市生态和人为因素之间细微、异质的关系。有效提高城市森林中的生物多样性需要针对特定背景特征量身定制评估、管理和保护策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a91/11848234/b2b3fed91d25/ECY-106-e70020-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验