Cavender-Bares Jeannine, Meireles Jose Eduardo, Pinto-Ledezma Jesús, Reich Peter B, Schuman Meredith C, Townsend Philip A, Trowbridge Amy
Department of Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.
Ecology. 2025 Jul;106(7):e70078. doi: 10.1002/ecy.70078.
Understanding ecosystem processes on our rapidly changing planet requires integration across spatial, temporal, and biological scales. We propose that spectral biology, using tools that enable near- to far-range sensing by capturing the interaction of energy with matter across domains of the electromagnetic spectrum, will increasingly enable ecological insights across scales from cells to continents. Here, we focus on advances using spectroscopy in the visible to short-wave infrared, chlorophyll fluorescence-detecting systems, and optical laser scanning (light detection and ranging, LiDAR) to introduce the topic and special feature. Remote sensing using these tools, in conjunction with in situ measurements, can powerfully capture ecological and evolutionary processes in changing environments. These tools are amenable to capturing variation in life processes across biological scales that span physiological, evolutionary, and macroecological hierarchies. We point out key areas of spectral biology with high potential to advance understanding and monitoring of ecological processes across scales-particularly at large spatial extents-in the face of rapid global change. These include: the detection of plant and ecosystem composition, diversity, structure, and function as well as their relationships; detection of the causes and consequences of environmental stress, including disease and drought, for ecosystems; and detection of change through time in ecosystems over large spatial extents to discern variation in and mechanisms underlying their resistance, recovery, and resilience in the face of disturbance. We discuss opportunities for spectral biology to discover previously unseen variation and novel processes and to prepare the field of ecology for novel computational tools on the horizon with vast new capabilities for monitoring the ecology of our changing planet.
要理解我们这个快速变化的星球上的生态系统过程,需要在空间、时间和生物尺度上进行整合。我们提出,光谱生物学通过利用能够通过捕捉能量与物质在电磁频谱各领域的相互作用来实现近程到远程传感的工具,将越来越有助于洞察从细胞到大陆的各个尺度的生态情况。在这里,我们重点介绍利用可见光到短波红外光谱学、叶绿素荧光检测系统和光学激光扫描(光探测和测距,LiDAR)方面的进展来引入这个主题和专题。使用这些工具进行遥感,并结合原位测量,可以有力地捕捉变化环境中的生态和进化过程。这些工具适合捕捉跨越生理、进化和宏观生态层次等生物尺度的生命过程变化。我们指出了光谱生物学的关键领域,这些领域在面对快速的全球变化时,具有极大潜力来推进对跨尺度生态过程的理解和监测,特别是在大空间范围。这些领域包括:检测植物和生态系统的组成、多样性、结构和功能及其相互关系;检测环境压力(包括疾病和干旱)对生态系统的成因和后果;以及检测大空间范围内生态系统随时间的变化,以辨别其在面对干扰时的抵抗力、恢复力和复原力的变化及潜在机制。我们讨论了光谱生物学发现以前未被发现的变化和新过程的机会,以及为生态领域准备迎接即将出现的具有监测我们不断变化星球生态的巨大新能力的新型计算工具的机会。