Suppr超能文献

利用化学遗传学氯离子电流调节心肌细胞收缩性和动作电位。

Modulation of cardiomyocyte contractility and action potentials with chemogenetic chloride currents.

作者信息

Sönmez Muhammed, Stüdemann Tim, Manthey Christoph, Covic Anita, Shehata Nancy, Im Junsoo, Schwarzova Barbora, Rössinger Judith, Srikantharajah Rajiven, Shibamiya Aya, Schwedhelm Edzard, Eschenhagen Thomas, Christ Torsten, Weinberger Florian

机构信息

Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.

出版信息

J Physiol. 2025 Mar;603(6):1399-1415. doi: 10.1113/JP286428. Epub 2025 Feb 24.

Abstract

Transient perturbation of electrical activity is used in neuroscience to study the impact of specific neuronal cell populations on brain function. Similarly, cardiomyocyte (CM) physiology can be controlled by the activation of artificially expressed ion channels. Pharmacologically selective actuator modules (PSAMs) are engineered ligand-gated ion channels that can be activated with small molecules. We aimed to use the 'inhibitory' PSAMs, (i) PSAM (PSAM-GlyR) and (ii) PSAM (ultrapotent PSAM-GlyR), which consist of modified α7-nicotinergic acetylcholine receptor ligand binding domains and the ion pore domain of the glycine receptor, to modulate CM physiology with chloride currents. We employed CRISPR/Cas9 to integrate PSAM-GlyR and PSAM-GlyR in induced pluripotent stem cells, differentiated CMs and generated engineered heart tissue (EHT). Video optical force recordings, sharp microelectrode action potential measurements and patch-clamp technique were used to characterize PSAM-GlyR and PSAM-GlyR CMs. PSAM-GlyR and PSAM-GlyR activation allowed titration of chloride currents in a reversible manner. We found that chloride currents modulated action potential characteristics. Patch clamp recordings showed that channel activation resulted in chloride-driven currents that depolarized the cell. In EHT, this resulted in a stop of contractility that was fully reversible after wash-out. We provide a comprehensive characterization of the chemogenetic tools PSAM-GlyR and PSAM-GlyR in CMs, demonstrating their utility to modulate CM activity in vitro (PSAM-GlyR and PSAM-GlyR) but also potential for in vivo applications (PSAM-GlyR). KEY POINTS: Pharmacologically selective actuator modules (PSAMs) are engineered ligand-gated ion channels that can be activated with small molecules. These chemogenetic tools have been applied in neuroscience to inhibit neuronal activity. Chemogenetic tools can also be used to modulate cardiomyocyte physiology. Activation of the PSAMs, PSAM-GlyR and PSAM-GlyR depolarized cardiomyocytes and thus stopped cardiac contractility. Our study characterizes novel tools that can be used to modulate cardiomyocyte physiology in vitro and in vivo.

摘要

在神经科学中,电活动的短暂扰动被用于研究特定神经元细胞群对脑功能的影响。同样,心肌细胞(CM)生理学可以通过人工表达离子通道的激活来控制。药理学选择性激活模块(PSAMs)是经过工程改造的配体门控离子通道,可被小分子激活。我们旨在使用“抑制性”PSAMs,即(i)PSAM(PSAM-GlyR)和(ii)PSAM(超高效PSAM-GlyR),它们由修饰的α7-烟碱型乙酰胆碱受体配体结合域和甘氨酸受体的离子孔域组成,通过氯离子电流来调节CM生理学。我们采用CRISPR/Cas9将PSAM-GlyR和PSAM-GlyR整合到诱导多能干细胞、分化的CMs中,并生成工程心脏组织(EHT)。使用视频光学力记录、尖锐微电极动作电位测量和膜片钳技术来表征PSAM-GlyR和PSAM-GlyR CMs。PSAM-GlyR和PSAM-GlyR的激活允许以可逆方式滴定氯离子电流。我们发现氯离子电流调节动作电位特征。膜片钳记录显示通道激活导致氯离子驱动的电流使细胞去极化。在EHT中,这导致收缩性停止,冲洗后完全可逆。我们对CMs中的化学遗传工具PSAM-GlyR和PSAM-GlyR进行了全面表征,证明了它们在体外调节CM活性(PSAM-GlyR和PSAM-GlyR)以及体内应用(PSAM-GlyR)的效用。要点:药理学选择性激活模块(PSAMs)是经过工程改造的配体门控离子通道,可被小分子激活。这些化学遗传工具已应用于神经科学中以抑制神经元活动。化学遗传工具也可用于调节心肌细胞生理学。PSAMs、PSAM-GlyR和PSAM-GlyR的激活使心肌细胞去极化,从而停止心脏收缩。我们的研究表征了可用于在体外和体内调节心肌细胞生理学的新型工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57fd/11908473/a3683657d0a3/TJP-603-1399-g011.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验