Department of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
University Hospital Heidelberg, Heidelberg, Germany.
J Clin Microbiol. 2024 Apr 10;62(4):e0087623. doi: 10.1128/jcm.00876-23. Epub 2024 Mar 20.
Manual microscopy of Gram stains from positive blood cultures (PBCs) is crucial for diagnosing bloodstream infections but remains labor intensive, time consuming, and subjective. This study aimed to evaluate a scan and analysis system that combines fully automated digital microscopy with deep convolutional neural networks (CNNs) to assist the interpretation of Gram stains from PBCs for routine laboratory use. The CNN was trained to classify images of Gram stains based on staining and morphology into seven different classes: background/false-positive, Gram-positive cocci in clusters (GPCCL), Gram-positive cocci in pairs (GPCP), Gram-positive cocci in chains (GPCC), rod-shaped bacilli (RSB), yeasts, and polymicrobial specimens. A total of 1,555 Gram-stained slides of PBCs were scanned, pre-classified, and reviewed by medical professionals. The results of assisted Gram stain interpretation were compared to those of manual microscopy and cultural species identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The comparison of assisted Gram stain interpretation and manual microscopy yielded positive/negative percent agreement values of 95.8%/98.0% (GPCCL), 87.6%/99.3% (GPCP/GPCC), 97.4%/97.8% (RSB), 83.3%/99.3% (yeasts), and 87.0%/98.5% (negative/false positive). The assisted Gram stain interpretation, when compared to MALDI-TOF MS species identification, also yielded similar results. During the analytical performance study, assisted interpretation showed excellent reproducibility and repeatability. Any microorganism in PBCs should be detectable at the determined limit of detection of 10 CFU/mL. Although the CNN-based interpretation of Gram stains from PBCs is not yet ready for clinical implementation, it has potential for future integration and advancement.
革兰氏染色阳性血培养物(PBC)的人工显微镜检查对于诊断血流感染至关重要,但仍然是劳动密集型、耗时且主观的。本研究旨在评估一种扫描和分析系统,该系统将全自动数字显微镜与深度卷积神经网络(CNN)相结合,以协助解释常规实验室使用的 PBC 的革兰氏染色。该 CNN 经过训练,可根据染色和形态将革兰氏染色图像分类为七个不同的类别:背景/假阳性、革兰氏阳性球菌簇(GPCCL)、革兰氏阳性双球菌(GPCP)、革兰氏阳性链状球菌(GPCC)、杆状杆菌(RSB)、酵母菌和混合微生物标本。共扫描了 1555 张 PBC 的革兰氏染色载玻片,对其进行了预分类,并由医学专业人员进行了回顾。辅助革兰氏染色解释的结果与手动显微镜检查和基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)的培养物种鉴定进行了比较。辅助革兰氏染色解释与手动显微镜检查的比较产生了阳性/阴性百分符合率为 95.8%/98.0%(GPCCL)、87.6%/99.3%(GPCP/GPCC)、97.4%/97.8%(RSB)、83.3%/99.3%(酵母菌)和 87.0%/98.5%(阴性/假阳性)。与 MALDI-TOF MS 种鉴定相比,辅助革兰氏染色解释也产生了类似的结果。在分析性能研究中,辅助解释显示出出色的重现性和可重复性。在确定的检测限 10 CFU/mL 下,PBC 中的任何微生物都应该是可检测的。虽然基于 CNN 的 PBC 革兰氏染色解释尚未准备好临床实施,但它具有未来集成和发展的潜力。