Muchtar Eli, Dispenzieri Angela, Sanchorawala Vaishali, Hassan Hamza, Mwangi Raphael, Maurer Matthew, Buadi Francis, Lee Hans C, Qazilbash Muzaffar, Kin Andrew, Zonder Jeffrey, Arai Sally, Chin Michelle M, Chakraborty Rajshekhar, Lentzsch Suzanne, Magen Hila, Shkury Eden, Sarubbi Caitlin, Landau Heather, Schönland Stefan, Hegenbart Ute, Gertz Morie
Division of Hematology, Mayo Clinic, Rochester, MN, USA.
Section of Hematology and Oncology, Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA.
Bone Marrow Transplant. 2025 May;60(5):595-602. doi: 10.1038/s41409-025-02535-z. Epub 2025 Feb 24.
Autologous stem cell Transplant (ASCT)-related mortality (TRM) in AL amyloidosis remains elevated. AL amyloidosis patients (n = 1718) from 9 centers, transplanted 2003-2020 were included. Pre-ASCT variables of interest were assessed for association with day-100 all-cause mortality. A random forest (RF) classifier with 10-fold cross-validation assisted in variable selection. The final model was fitted using logistic regression. The median age at ASCT was 58 years. Day-100 TRM occurred in 75 patients (4.4%) with the predominant causes being shock, high-grade arrhythmia, and organ failure. Ten factors were associated with day-100 TRM on univariate analysis. RF classifier using these variables generated a model with an area under the curve (AUC) of 0.72 ± 0.12. To refine the model selection using importance hierarchy function, a 4-variable model [NT-proBNP/BNP, serum albumin, ECOG performance status (PS), and systolic blood pressure] was built with an AUC of 0.70 ± 0.12. Based on logistic regression coefficients, ECOG PS 2/3 was assigned two points while other adverse predictors 1-point each. The model score range was 0-5, with a day-100 TRM of 0.46%, 3.2%, 5.8%, and 14.5% for 0, 1, 2, and ≥3 points, respectively. This model to predict day-100 TRM in AL amyloidosis allows better-informed decision-making in this heterogeneous disease.
在AL淀粉样变性中,自体干细胞移植(ASCT)相关死亡率(TRM)仍然很高。纳入了2003年至2020年期间来自9个中心的1718例接受移植的AL淀粉样变性患者。评估了ASCT前感兴趣的变量与100天全因死亡率的相关性。采用10折交叉验证的随机森林(RF)分类器辅助变量选择。最终模型采用逻辑回归拟合。ASCT时的中位年龄为58岁。75例患者(4.4%)发生了100天TRM,主要原因是休克、高度心律失常和器官衰竭。单因素分析显示有10个因素与100天TRM相关。使用这些变量的RF分类器生成了一个曲线下面积(AUC)为0.72±0.12的模型。为了使用重要性层次函数优化模型选择,构建了一个包含4个变量的模型[NT-proBNP/BNP、血清白蛋白、东部肿瘤协作组(ECOG)体能状态(PS)和收缩压],其AUC为0.70±0.12。根据逻辑回归系数,ECOG PS 2/3赋值2分,其他不良预测因素各赋值1分。模型评分范围为0至5分,0分、1分、2分和≥3分的100天TRM分别为0.46%、3.2%、5.8%和14.5%。这个用于预测AL淀粉样变性患者100天TRM的模型有助于在这种异质性疾病中做出更明智的决策。