Longcoy Joshua, Isgor Zeynep, Suzuki Sumihiro, Lynch Elizabeth, Wang Heng, Ansell David, Johnson Tricia J
RUSH BMO Institute for Health Equity, Rush University Medical Center, 1700 W. Van Buren St. Suite 126B, Chicago, IL 60612, USA.
Department of Health Systems Management, Rush University Medical Center, 1700 W. Van Buren St. Suite 126B, Chicago, IL 60612, USA.
Healthcare (Basel). 2025 Feb 11;13(4):381. doi: 10.3390/healthcare13040381.
: Reports documenting racial disparities in COVID-19 hospitalization rates from electronic medical record data have different sample selection methods. Studies including all individuals with a positive COVID-19 test may be vulnerable to misclassification bias if hospitalization status is not captured for all individuals (i.e., if they went to a non-study hospital). A few studies have used only patients who tested positive in the ED and have found different results. In this study, we explore the implications of using different sets of inclusion criteria for analyses that compare COVID-19 hospital admissions by race and ethnicity. : Two separate data sets were created by applying the two different COVID-19 testing inclusion criteria to medical records data from a single academic health system. We used logistic regression to compare the odds of COVID-19 hospitalization across race and ethnicity for each data set and compared our results with previous studies. : We found that using all positive COVID-19 tests as the study sample resulted in higher odds of hospitalization for Black and Hispanic patients relative to White patients. In contrast, using only patients who tested positive in the ED resulted in higher odds of hospitalization for White patients. These findings matched the findings of other studies. : Patient inclusion criteria should be considered carefully when comparing results from studies of COVID-19 hospitalization.
: 记录新冠病毒疾病(COVID-19)住院率种族差异的报告采用了不同的样本选择方法。如果并非所有个体的住院状态都被记录(即,如果他们去了非研究医院),那么纳入所有新冠病毒检测呈阳性个体的研究可能容易受到错误分类偏差的影响。一些研究仅使用了在急诊科检测呈阳性的患者,并得出了不同的结果。在本研究中,我们探讨了使用不同组纳入标准进行分析的影响,这些分析旨在比较按种族和族裔划分的新冠病毒疾病住院情况。: 通过将两种不同的新冠病毒检测纳入标准应用于来自单一学术健康系统的医疗记录数据,创建了两个独立的数据集。我们使用逻辑回归来比较每个数据集按种族和族裔划分的新冠病毒疾病住院几率,并将我们的结果与之前的研究进行比较。: 我们发现,将所有新冠病毒检测呈阳性者作为研究样本,相对于白人患者,黑人和西班牙裔患者的住院几率更高。相比之下,仅使用在急诊科检测呈阳性的患者,白人患者的住院几率更高。这些发现与其他研究的结果相符。: 在比较新冠病毒疾病住院研究结果时,应仔细考虑患者纳入标准。