Suppr超能文献

临床医生收集的细菌性阴道病诊断样本中阴道微生物群的特征分析。

Characterization of vaginal microbiomes in clinician-collected bacterial vaginosis diagnosed samples.

作者信息

Brochu Hayden N, Zhang Qimin, Song Kuncheng, Wang Ling, Deare Emily A, Williams Jonathan D, Icenhour Crystal R, Iyer Lakshmanan K

机构信息

Labcorp Center for Excellence in Data Science, AI and Bioinformatics, Burlington, North Carolina, USA.

Labcorp Research and Development, Office of the CSO, Burlington, North Carolina, USA.

出版信息

Microbiol Spectr. 2025 Apr;13(4):e0258224. doi: 10.1128/spectrum.02582-24. Epub 2025 Feb 25.

Abstract

Bacterial vaginosis (BV) is a type of vaginal inflammation caused by bacterial overgrowth, upsetting the healthy microbiome of the vagina. Existing clinical testing for BV is primarily based upon physical and microscopic examination of vaginal secretions. Modern PCR-based clinical tests target panels of BV-associated microbes, such as the Labcorp NuSwab test that targets () , , and . Remnant clinician-collected NuSwab vaginal swabs underwent DNA extraction and 16S V3-V4 rRNA gene sequencing to profile microbes in addition to those included in the Labcorp NuSwab test. Community state types (CSTs) were determined using the most abundant taxon detected in each sample. PCR results for NuSwab panel microbial targets were compared against the corresponding microbiome profiles. Metabolic pathway abundances were characterized via metagenomic prediction from amplicon sequence variants (ASVs). 16S V3-V4 rRNA gene sequencing of 75 remnant vaginal swabs yielded 492 unique 16S V3-V4 ASVs, identifying 83 unique genera. NuSwab microbe quantification was strongly concordant with quantification by sequencing ( < 0.01). Samples in CST-I (18 of 18, 100%), CST-II (three of three, 100%), CST-III (15 of 17, 88%), and CST-V (one of one, 100%) were largely categorized as BV-negative via the NuSwab panel, while most CST-IV samples (28 of 36, 78%) were BV-positive or BV-indeterminate. BV-associated microbial and predicted metabolic signatures were shared across multiple CSTs. These findings highlight robust sequencing-based quantification of Labcorp NuSwab BV microbes, accurate discrimination of vaginal microbiome CSTs dominated by distinct , and expanded the identification of BV-associated bacterial and metabolic biomarkers.IMPORTANCEBacterial vaginosis (BV) poses a significant health burden for women during reproductive years and onward. Current BV diagnostics rely on either panels of select microbes or on physical and microscopic evaluations by technicians. Here, we sequenced the microbiome profiles of samples previously diagnosed by the Labcorp NuSwab test to better understand disruptions to the vaginal microbiome during BV. We show that microbial sequencing can faithfully reproduce targeted PCR diagnostic results and can improve our knowledge of healthy and BV-associated microbial and metabolic biomarkers. This work highlights a robust, agnostic BV classification scheme with potential for future development of sequencing-based BV diagnostic tools.

摘要

细菌性阴道病(BV)是一种由细菌过度生长引起的阴道炎症,会破坏阴道的健康微生物群。现有的BV临床检测主要基于对阴道分泌物的体格检查和显微镜检查。现代基于PCR的临床检测针对与BV相关的微生物组,例如Labcorp NuSwab检测,其针对()、和。除了Labcorp NuSwab检测所涵盖的微生物外,对临床医生收集的剩余NuSwab阴道拭子进行DNA提取和16S V3-V4 rRNA基因测序,以分析微生物特征。使用每个样本中检测到的最丰富的分类单元确定群落状态类型(CST)。将NuSwab检测组微生物靶点的PCR结果与相应的微生物组特征进行比较。通过对扩增子序列变体(ASV)进行宏基因组预测来表征代谢途径丰度。对75个剩余阴道拭子进行16S V3-V4 rRNA基因测序,产生了492个独特的16S V3-V4 ASV,鉴定出83个独特的属。NuSwab微生物定量与测序定量高度一致(<0.01)。CST-I(18个样本中的18个,100%)、CST-II(3个样本中的3个,100%)、CST-III(17个样本中的15个,88%)和CST-V(1个样本中的1个,100%)的样本通过NuSwab检测组大多被归类为BV阴性,而大多数CST-IV样本(36个样本中的28个,78%)为BV阳性或BV不确定。与BV相关的微生物和预测的代谢特征在多个CST中共享。这些发现突出了基于测序的对Labcorp NuSwab BV微生物的可靠定量、对由不同的主导的阴道微生物组CST的准确区分,并扩大了与BV相关的细菌和代谢生物标志物的鉴定。重要性细菌性阴道病(BV)对育龄及以后的女性构成了重大的健康负担。目前的BV诊断依赖于选定微生物组或技术人员的体格检查和显微镜评估。在这里,我们对先前通过Labcorp NuSwab检测诊断的样本的微生物组特征进行了测序,以更好地了解BV期间阴道微生物组的破坏情况。我们表明,微生物测序可以忠实地重现靶向PCR诊断结果,并可以提高我们对健康和与BV相关的微生物及代谢生物标志物的认识。这项工作突出了一种强大的、无偏见的BV分类方案,具有未来开发基于测序的BV诊断工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd08/11960135/c1f4f124041a/spectrum.02582-24.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验