Suppr超能文献

一个包含 33804 个参考基因组的多王国集合,用于人类阴道微生物组。

A multi-kingdom collection of 33,804 reference genomes for the human vaginal microbiome.

机构信息

Department of Reproductive Health, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China.

Puensum Genetech Institute, Wuhan, China.

出版信息

Nat Microbiol. 2024 Aug;9(8):2185-2200. doi: 10.1038/s41564-024-01751-5. Epub 2024 Jun 21.

Abstract

The human vagina harbours diverse microorganisms-bacteria, viruses and fungi-with profound implications for women's health. Genome-level analysis of the vaginal microbiome across multiple kingdoms remains limited. Here we utilize metagenomic sequencing data and fungal cultivation to establish the Vaginal Microbial Genome Collection (VMGC), comprising 33,804 microbial genomes spanning 786 prokaryotic species, 11 fungal species and 4,263 viral operational taxonomic units. Notably, over 25% of prokaryotic species and 85% of viral operational taxonomic units remain uncultured. This collection significantly enriches genomic diversity, especially for prevalent vaginal pathogens such as BVAB1 (an uncultured bacterial vaginosis-associated bacterium) and Amygdalobacter spp. (BVAB2 and related species). Leveraging VMGC, we characterize functional traits of prokaryotes, notably Saccharofermentanales (an underexplored yet prevalent order), along with prokaryotic and eukaryotic viruses, offering insights into their niche adaptation and potential roles in the vagina. VMGC serves as a valuable resource for studying vaginal microbiota and its impact on vaginal health.

摘要

人类阴道中栖息着多种微生物,包括细菌、病毒和真菌,这些微生物对女性健康有着深远的影响。对多个领域的阴道微生物组进行基因组水平分析仍然有限。在这里,我们利用宏基因组测序数据和真菌培养方法建立了阴道微生物基因组集合(VMGC),其中包含 33804 个微生物基因组,涵盖了 786 个原核物种、11 个真菌物种和 4263 个病毒分类单元。值得注意的是,超过 25%的原核物种和 85%的病毒分类单元仍然无法培养。该集合极大地丰富了基因组多样性,特别是对于常见的阴道病原体,如 BVAB1(一种未培养的细菌性阴道病相关细菌)和 Amygdalobacter spp.(BVAB2 和相关物种)。利用 VMGC,我们对原核生物的功能特征进行了描述,特别是 Saccharofermentanales(一个尚未充分研究但广泛存在的目),以及原核生物和真核生物病毒,为它们在阴道中的生态适应和潜在作用提供了新的认识。VMGC 是研究阴道微生物组及其对阴道健康影响的宝贵资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11306104/7333676b6977/41564_2024_1751_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验