Yang Shang-Mei, Shao Shi-Ping, Xie Yu-Long
School of Chemistry and Chemical Engineering, Qinghai Minzu University, Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, Qinghai Provincial Key Laboratory of Nanomaterials and Nanotechnology, Xining, China.
PLoS One. 2025 Feb 25;20(2):e0318327. doi: 10.1371/journal.pone.0318327. eCollection 2025.
The lithium fast ion conductor LiAlSiO4 demonstrates exceptional lithium-ion transmission properties alongside remarkable chemical stability. Utilizing sol-gel techniques, we synthesized LiAlSiO4-coated cathode materials (LNCM@LASO) based on Li1.2Mn0.54Ni0.13Co0.13O2 to enhance their electrochemical performance. Rm space groups were identified in all materials through high-intensity diffraction peaks, indicating the presence of hexagonal layered α-NaFeO2 structures. Benefiting from the coating layer of LiAlSiO4, the conductivity and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 are significantly improved. Compared with the unmodified LASO-0 sample (42.27%), the LASO-3 sample exhibits a superior initial coulomb efficiency of 66.02%. At various charge/discharge rates (0.1, 0.2, 0.5, 1, and 2 C), the LASO-3 electrode exhibits specific discharge capacities of 210.6, 189.3, 168.1, 151.8, and 125.2 mAh·g-1, correspondingly. Upon reverting the current density from 2 C to 0.1 C, the discharge capacity of the LASO-3 electrode rebounds to 206.4 mAh·g-1. After 100 cycles at 0.1 C, the LASO-3 electrode achieves a peak capacity retention rate of 88.9%. The superior conductive properties and chemical stability of the LNCM@LASO enhance the electron and ion transfer, thereby preventing electrolyte attack and boosting the electrochemical performance. This research marks a crucial step towards developing high-capacity, low-cost lithium-ion batteries with wide-ranging implications across multiple disciplines and industries.
锂快离子导体LiAlSiO4展现出卓越的锂离子传输性能以及出色的化学稳定性。利用溶胶-凝胶技术,我们基于Li1.2Mn0.54Ni0.13Co0.13O2合成了LiAlSiO4包覆的正极材料(LNCM@LASO),以提升其电化学性能。通过高强度衍射峰在所有材料中鉴定出Rm空间群,表明存在六方层状α-NaFeO2结构。受益于LiAlSiO4涂层,Li1.2Mn0.54Ni0.13Co0.13O2的电导率和电化学性能得到显著改善。与未改性的LASO-0样品(42.27%)相比,LASO-3样品展现出66.02%的优异初始库仑效率。在不同的充/放电速率(0.1、0.2、0.5、1和2 C)下,LASO-3电极相应地展现出210.6、189.3、168.1、151.8和125.2 mAh·g-1的比放电容量。当电流密度从2 C恢复到0.1 C时,LASO-3电极的放电容量回升至206.4 mAh·g-1。在0.1 C下循环100次后,LASO-3电极实现了88.9%的峰值容量保持率。LNCM@LASO的优异导电性能和化学稳定性增强了电子和离子传输,从而防止电解质侵蚀并提升了电化学性能。这项研究标志着朝着开发具有广泛跨学科和行业影响的高容量、低成本锂离子电池迈出了关键一步。