Henriques Andre, Jia Wei, Aleixo Luis, Mounet Nicolas, Fontana Luca, Simniceanu Alice, Devine James, Elson Philip, Azzopardi Gabriella, Rognlien Markus, Andreini Marco, Tarocco Nicola, Keiser Olivia, Li Yuguo, Tang Julian W
CERN (European Organization for Nuclear Research), Geneva, Switzerland.
Institute of Global Health, University of Geneva, Geneva, Switzerland.
J R Soc Interface. 2025 Feb;22(223):20240740. doi: 10.1098/rsif.2024.0740. Epub 2025 Feb 26.
This study presents an advanced airborne transmission risk assessment model that integrates both short- and long-range routes in the spread of respiratory viruses, building upon the CERN Airborne Model for Indoor Risk Assessment (CAiMIRA) and aligned with the new World Health Organization (WHO) terminology. Thanks to a two-stage exhaled jet approach, the model accurately simulates short-range exposures, thereby improving infection risk predictions across diverse indoor settings. Key findings reveal that in patient wards, the short-range viral dose is 10-fold higher than the long-range component, highlighting the critical role of close proximity interactions. Implementation of FFP2 respirators resulted in a remarkable 13-fold reduction in viral dose, underscoring the effectiveness of personal protective equipment (PPE). Additionally, the model demonstrated that an 8 h exposure in a poorly ventilated office can equate to the risk of a 15 min face-to-face, mask-less interaction, emphasizing the importance of physical distancing and source control. We also found in high-risk or low-occupancy settings, that secondary transmission is driven more by overall epidemic trends than by the presence of individual superspreaders. Monte Carlo simulations across various scenarios, including classrooms and offices, validate the model's robustness in optimizing infection prevention strategies. These findings support targeted interventions for short- and long-range exposure to reduce airborne transmission.
本研究提出了一种先进的空气传播风险评估模型,该模型整合了呼吸道病毒传播中的短程和远程路径,以欧洲核子研究组织室内风险评估空气传播模型(CAiMIRA)为基础,并与世界卫生组织(WHO)的新术语保持一致。借助两阶段呼出射流方法,该模型准确模拟了短程暴露,从而改进了对不同室内环境中感染风险的预测。主要研究结果表明,在病房中,短程病毒剂量比远程部分高10倍,凸显了近距离接触的关键作用。佩戴FFP2呼吸器可使病毒剂量显著降低13倍,强调了个人防护装备(PPE)的有效性。此外,该模型表明,在通风不良的办公室中暴露8小时相当于进行15分钟无口罩面对面接触的风险,强调了保持社交距离和源头控制的重要性。我们还发现在高风险或低占用率环境中,二次传播更多地由总体流行趋势驱动,而非个别超级传播者的存在。针对教室和办公室等各种场景的蒙特卡洛模拟验证了该模型在优化感染预防策略方面的稳健性。这些研究结果支持针对短程和远程暴露的有针对性干预措施,以减少空气传播。