School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom.
Bristol Veterinary School, University of Bristol, Langford, Bristol BS40 5DU, United Kingdom.
Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2200109119. doi: 10.1073/pnas.2200109119. Epub 2022 Jun 28.
Understanding the factors that influence the airborne survival of viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aerosols is important for identifying routes of transmission and the value of various mitigation strategies for preventing transmission. We present measurements of the stability of SARS-CoV-2 in aerosol droplets (∼5 to 10 µm equilibrated radius) over timescales spanning 5 s to 20 min using an instrument to probe survival in a small population of droplets (typically 5 to 10) containing ∼1 virus/droplet. Measurements of airborne infectivity change are coupled with a detailed physicochemical analysis of the airborne droplets containing the virus. A decrease in infectivity to ∼10% of the starting value was observable for SARS-CoV-2 over 20 min, with a large proportion of the loss occurring within the first 5 min after aerosolization. The initial rate of infectivity loss was found to correlate with physical transformation of the equilibrating droplet; salts within the droplets crystallize at relative humidities (RHs) below 50%, leading to a near-instant loss of infectivity in 50 to 60% of the virus. However, at 90% RH, the droplet remains homogenous and aqueous, and the viral stability is sustained for the first 2 min, beyond which it decays to only 10% remaining infectious after 10 min. The loss of infectivity at high RH is consistent with an elevation in the pH of the droplets, caused by volatilization of CO from bicarbonate buffer within the droplet. Four different variants of SARS-CoV-2 were compared and found to have a similar degree of airborne stability at both high and low RH.
了解影响病毒(如严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2))在气溶胶中空气传播的因素对于确定传播途径和评估各种减轻策略对预防传播的价值非常重要。我们使用一种仪器在 5 秒至 20 分钟的时间尺度上测量了 SARS-CoV-2 在气溶胶液滴(平衡半径约为 5 至 10 µm)中的稳定性,该仪器可以探测含有约 1 个病毒/液滴的小液滴群(通常为 5 至 10 个)中的生存情况。对空气传播感染性变化的测量与对含有病毒的空气传播液滴的详细物理化学分析相结合。在 20 分钟内,SARS-CoV-2 的感染性下降到初始值的约 10%,其中大部分损失发生在气溶胶化后的前 5 分钟内。发现初始感染性丧失率与平衡液滴的物理转化相关;液滴中的盐在相对湿度 (RH) 低于 50%时结晶,导致在 50%至 60%的病毒中立即丧失感染性。然而,在 90% RH 下,液滴保持均匀和水相,病毒稳定性在最初 2 分钟内得以维持,超过 10 分钟后,其仅剩余 10%的感染性。在高 RH 下丧失感染性与液滴中 pH 值升高一致,这是由于液滴中碳酸氢盐缓冲液中的 CO 挥发引起的。比较了四种不同的 SARS-CoV-2 变体,发现它们在高 RH 和低 RH 下都具有相似程度的空气传播稳定性。